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Abstract: In this article, we introduce, evaluate, and apply a new
ordinally based soil Productivity Index (PI). The PI uses family-level
Soil Taxonomy information, that is, interpretations of features or prop-
erties, recognized in Soil Taxonomy, that tend to be associated with low
or high soil productivity, to rank soils from 0 (least productive) to 19
(most productive). The index has a wide application generally at land-
scape scales. Unlike competing indexes, it does not require copious
amounts of soil data, for example, pH, organic matter, or cation exchange
capacity, in its derivation. Geographic information system applications
of the PI, in particular, have great potential. Results confirmed that for
1,000 sites in southern Michigan, the mean PI of cultivated sites is
significantly higher (10.94) than that of forested sites (7.77). We also
compared the PI with published productivity values for Illinois soils.
The positive statistical correlations that resulted confirmed that the PI is
an effective measure of productivity for areas that do not have robust
productivity data or a wealth of local soil knowledge, as does Illinois.
Last, 2009 crop yield data for 11 Midwestern states were used to further
evaluate the PI. In a geographic information system, we determined the
soils and crops in particular fields and thus were able to ascertain the
mean PI value per soil, per crop, per county. Statewide summaries of
these data produced statistical correlations among yields of specific
crops and PI values that were all positive; many exceeded 0.60. For
regionally extensive applications, the PI may be as useful and robust as
other indexes that have much more exacting data requirements.
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(Soil Sci 2012;177: 288Y299)

‘‘Fertility,’’ or the inherent ability of soils to provide the nec-
essary environment to growing plants, particularly with re-

gard to nutrients, is an important and yet also a somewhat elusive
(and often application-specific) soil property. Alternatively,
‘‘soil productivity’’ refers to the capacity of a soil to produce a
certain yield of crops or other plants within a specified system of
management (Soil Science Society of America, 2011). Therefore,
soil productivity is perhaps the more quantifiable of the two
terms and is the focus of this research.

Various publications have focused on soil productivity,
deriving fairly accurate estimates of, and correlations among,
crop and forest yields for specific soils or soil types (Ortega
and Santibanez, 2007). However, most of these studies have
restricted use because their accuracy diminishes beyond the

specific area of study. Indeed, in many cases, they cannot be
used outside of the study area because the productivity estimates
are keyed to particular soil series or to specific crops. Alterna-
tively, some studies have shown that productivity is, indeed,
mappable across large areas, but only where there exist abundant
and detailed data on terrain and soil attributes (Rossel et al.,
2010) or where productivity is grouped into only a minimal
number of categories (e.g., Jamroz, 2009). Our focus here is to
examine productivity at larger (landscape) extents, acknowl-
edging that we are sacrificing high site-specific accuracy as-
sessments of productivity, which have dominated the literature,
for greater and more widespread applicability. As a result, our
data will be amenable to landscape-scale geographic information
system (GIS) applications.

Soil productivity can be easily and rapidly amended by
human activities. Thus, no index of productivity can accurately
assess current soil productivity where soils have had a long
history of cropping, erosion, and/or additions of soil amend-
ments (e.g., Urkurkar et al., 2010). Particularly, irrigation and
drainage practices impact soil fertility/productivity and, there-
fore, any index of productivity is only an estimate; it is always
affected by land-use practices, both current and those in the past.
Thus, we focus on natural native soil productivity, as expressed
in a soil’s taxonomic classification and recognize that such an
estimate is, at best, a good starting point. We use soil classifi-
cation nomenclature to derive productivity estimates because
most soil classification taxa do not change (at least short-term)
because of fertilization, cultivation, or irrigation. We argue that,
on a landscape scale, natural soil productivity is mainly affected
by exchangeable and reserve nutrient contents, soil tilth, organic
carbon contents, clay mineralogy, and presence or absence of a
root-impeding layer (e.g., Dick, 1992; Mendon0a and Rowell,
1996; Trasar-Cepeda et al., 1998; Ortega and Santibanez, 2007;
and Chaer et al., 2009), and that a soil’s taxonomic classification
is often reflective of some or most of these attributes.

In an earlier article, Schaetzl et al. (2009) developed and
presented an ordinal natural soil drainage index (DI), which
is intended to reflect long-term soil wetness or the amount of
water that a soil can supply to growing plants under natural
conditions. The DI’s main assumption is that soils in drier cli-
mates and with deeper water tables have less plant-usable water.
Because the taxonomic nomenclature of a soil often reflects
its long-term wetness, the DI is derived, in part, from a soil’s
taxonomic subgroup classification. Our success in deriving the
DI from soil taxonomic classifications was the impetus for
our current research effort, designed to index soil productivity,
from similar, that is, soil taxonomic, inputs. Ultimately, we
envisionVand call forVresearch and applications where the DI
and PI are collectively used to derive even better assessments
of soil productivity.

COMPARING THE PRODUCTIVITY INDEX
WITH OTHER MEASURES AND MODELS OF

FERTILITY/PRODUCTIVITY
Two other existing and competing indices of soil produc-

tivity are worth discussing here. Recently, the state of Minnesota
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released its Crop Productivity Index (CPI) (Minnesota Geo-
spatial Information Office, 2011). The CPI, data for which are
available only for Minnesota, is calculated for each soil com-
ponent mapping phase from the Cropland Productivity rule in
the National Soil Information System, a database used by the
Natural Resources Conservation Service (NRCS). Index ratings
are ordinal and range from 0 (low productivity soils) to 100
(highest level of productivity). Unlike the PI, which returns
the same value for all soils that have the same taxonomic no-
menclature, the CPI can change across county boundaries and
varies as a function of slope and other factors. Thus, its use is
geographically limited.

Another measure of crop productivity potential is the
USDA-NRCS National Commodity Crop Productivity Index
(NCCPI) (Dobos et al., 2008). The NCCPI is also generated
from the National Soil Information System. In the NCCPI, soil
properties, landscape features, and climatic characteristics are
input to a model that assigns productivity ratings to soils. The
overall NCCPI is segmented into submodels, each of which is
directed toward the production of a certain crop, for example,
wheat, cotton, sorghum, corn, soybeans, and barley. The model
ranges from 0.01 (low productivity) to 1.0 (high productivity).
Inputs to the model fall into several categories: chemical and
physical soil properties, water, soil climate, landscape, positive
attributes, and negative attributes (Dobos et al., 2008). Like the
PI, the NCCPI has the benefits of being consistent across po-
litical boundaries, and it has an advantage if the user is interested
in productivity as related to a particular crop.

Although the NCCPI takes into account many more vari-
ables that impact crop productivity than does the PI, the com-
plexity of the NCCPI submodels makes creating maps time
intensive and less transparent to the public, many of whom will
have difficulty accessing all the necessary data. In addition, data
inputs to the NCCPI are considerable. State level indexes, like
Minnesota’s CPI, may have a quite high local value, but present
severe challenges for regional- and/or national-scale analyses.
And most importantly, before public policy and land value de-
cisions can be made, based on any of these models, they must
be validated against actual yield data.

By way of clarification, we stress that the PI, the index of
soil productivity we present here, is different from indices de-
rived to assess soil quality. Soil quality concepts generally assess
the various soil properties and processes as they affect the soil’s
ability to function effectively within a healthy ecosystem (Cox,
1995; Patzel et al., 2000; Schoenholtz et al., 2000). Our focus is
on natural soil productivity, which, along with soil water con-
tent, is an important metric in the determination the soils’ ability
to produce food and fiber.

Last, we recognize that increased accuracy and predict-
ability could be achieved were we to restrict our analysis to
certain soil types or to small areas or even field scales, as, for
example, the CPI does. However, our purpose is to present an
index that will be widely applicable on mainly large (regional,
statewide, etc.) scales and yet has sufficient categories so as to be
discriminating enough for many kinds of landscape/productivity/
fertility applications often within GIS frameworks.

MATERIALS AND METHODS

Derivation
We initially attempted to group all soils in the USDA-

NRCS taxonomic database based on what we viewed as key
aspects of fertility or potential productivity using data from the
NRCS laboratory data Web site (http://ssldata.nrcs.usda.gov/).

We chose the following data categories because they generally
correlate with productivity and because they are routinely de-
termined for soil samples sent into the laboratory: (i) cation
exchange capacity (CEC) categories (superactive, subactive,
semiactive, active, histic, and low); (ii) CEC activity at pH7,
divided by the percent clay and weighted for the solum; (iii)
organic matter content of the uppermost mineral horizon; (iv)
organic matter content at the 50-cm depth; (v) pH categories
(noncalcareous, nonacid, acid, dysic, euic, and calcareous); and
(vi) whether or not the soil has a root-impeding lithic layer
within the control section, that is, Lithic subgroups. After ac-
quiring these data (where possible, some pedons lack the com-
plete data set) for 18,073 pedons, we realized that the data were
from a highly nonrandom sample of U.S. soils. Many more sub-
groups were missing from the NRCS laboratory data set than
we had anticipated, and, more importantly, the data are skewed
toward pedons that often are, we believe, atypical of central
taxonomic concepts. That is, field soil mappers are much more
likely to send in samples from pedons that are atypical and for
which they cannot ascertain its taxonomic classification than
they are for pedons that represent a taxa’s central concept. Thus,
we chose not to derive the PI using these data and moved on to
a second approach.

The procedure we used to derive the PI, given the lack of
robust soils laboratory data, was similar to the method used by
Schaetzl et al. (2009) in developing the DI. For the PI to have
widespread applicability, especially within a GIS, we tied it to
taxonomic subgroups within Soil Taxonomy (Soil Survey Staff,
1999) and limited the categories to ordinal values. Unlike the
DI categorization, which spans a large range from 0 (dry) to 99
(wet), we knew that we would have less ability to discriminate
soil productivity using only taxonomic information. Thus, our
goal was for the final PI value to span the range 0 to 19 (one
fifth as long as the DI). We used the following variables to guide
our initial assessments of productivity among the 12 soil orders:
(i) organic matter content, (ii) CEC, and (iii) clay mineralogy, as
well as our knowledge of general land use on each of the orders.
For example, Oxisols with low CEC values because of oxide and
1:1 clay minerals and low organic matter contents received the
lowest base PI value of 3 (Table 1). Similarly, Histosols are
highly fertile, if drained, because of their organic matter content
and high CEC values, and thus they merited the highest base PI
value of 14 (Table 1). Soil orders that are routinely intensively
cultivated and, thus, have shown a long history of successful
cultivation and productivity, for example, Mollisols, Vertisols,
and Histosols, were assigned base PI values nearer the high
(fertile) end of the range.

Next, we assigned modifier values to each suborder, Great
Group and subgroup, when these entries implied changes (more
or less) in overall productivity relative to the base value. The
rationale for each of these modifiers is briefly listed in Tables 2,
3, and 4. For subgroups with more than one modifier, for ex-
ample, Humic Psammentic Dystrudepts, values for each modi-
fier were used in combination, that is, summed, when calculating
a final PI. In all, we developed PI values for the more than 2,450
taxonomic subgroups recognized in Soil Taxonomy (Soil Survey
Staff, 1999).

Last, we modified the PI by adjusting for texture based on
texture family classification. Because Psamments and ‘‘psamm’’
modifiers merit a -2 value (Tables 2, 3, 4), we assigned a value
of -2 to soils in sandy texture families (Fig. 1). Silty soils tend to
have the best tilth and soil-water relationships for plant growth,
and thus we assigned soils in silty texture families a modifier
value of +2. Other modifier values are shown in Fig. 1. Modi-
fying the PI for texture also helps accommodate for tilthVan
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important part of productivity for cultivated crops; fine-textured
clays and silty clays have their PI values lowered, as do exces-
sively sandy soils. Alternatively, silty and loamy soilsVtypically
the ones that have excellent tilthVhave slightly higher PI val-
ues. A complete spreadsheet of PI values for all current soil
textural families mapped in the United States is available for
download at www.drainageindex.msu.edu.

Verification
The next step in our research plan was to examine how well

PI values correlated spatially and statistically with data on (i)
land use; (ii) crop growth, yields, and production; (iii) tree
growth; and (iv) other productivity indices. We viewed this
analysis as a means of verification of the use, efficacy, and
predictive power of the index.

We assumed that areas with higher PI values would more
often be farmed and that forested areas are often uncultivated
because the soils there are less fertile; our experience in the
Great Lakes region strongly supports this assumption. To ex-
amine this relationship quantitatively, however, we randomly
assigned 1,000 data points across Michigan’s Lower Peninsula
in a GIS (Fig. 2). These points were overlain onto two files:
SSURGO (Soil Survey Geographic) soil data from the NRCS
(Soil Survey Staff, 2011) and 2009 land use (USDA-NASS,
2011a). At each point, we determined the PI value of the soil
from the SSURGO database as well as land use (and field crop,
where applicable) from the land-use database. The PI data for
cultivated, forested, and ‘‘all other’’ land-use categories were
compiled and compared using a standard t test with the as-
sumption that variances are not equal among the populations.

TABLE 2. Suborder PI Modifiers*

Suborder
Modifier Name

Change Made to
Base PI Value Justification Soil Orders Affected

And- +2 Andic properties imply increased productivity Inceptisols
Gel- +2 Gelic properties imply increased organic matter Spodosols and Inceptisols
Hist- +2 Histic properties imply increased organic matter Gelisols
Hum- +2 Increased amounts of organic matter Spodosols
Anthr- +1 Manuring and other human influences likely increase

the overall productivity
Inceptisols

Arg- +1 Illuvial clay in B horizon probably increases CEC
and water-holding ability

Aridisols

Calc- +1 Calcium is an essential nutrient; these soils have an abundance Aridisols
Fluv- +1 Soils in floodplains frequently get influxes of fresh

humus-rich sediment
Entisols

Rend- +1 High amounts of Ca, an essential nutrient; high pH levels
in subsoil

Mollisols

Umb- +1 Increased amounts of organic matter Inceptisols
Vitr- +1 Glassy mineral assemblage promotes nutrient storage

and exchange
Andisols

Dur- j1 Duripan restricts rooting depth Aridisols
Psamm- j2 Sandiness limits CEC and water-holding capacity Entisols

*Modifiers not shown here have no effect on the base PI value.

TABLE 1. Base PI Values for the 12 Soil Orders

Soil Order Base Productivity Index Value Justification

Histosols 14 Organic soils, highly fertile when drained
Mollisols 13 Highest organic matter contents of all mineral soils
Vertisols 12 Also very high in organic matter
Andisols 11 Minimally weathered and rich in short-rangeYorder minerals; many are

rich in organic matter
Alfisols 10 Generally low in organic matter, but many are quite fertile
Inceptisols 9 Like Alfisols, but usually less fertile
Gelisols 8 Generally fertile soils, but severely compromised because of cold climate
Spodosols 7 Acid soils of minimal productivity, although some have notable amounts

of organic matter
Entisols 6 Minimally developed soils, usually low in organic matter
Aridisols 5 Can be fertile but severely compromised by dry climate
Ultisols 4 Low-activity clays limit productivity
Oxisols 3 Oxide and low-activity clays greatly limit productivity

Schaetzl et al. Soil Science & Volume 177, Number 4, April 2012

290 www.soilsci.com * 2012 Lippincott Williams & Wilkins

Copyright © 2012 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



This analysis should determine whether the more fertile (read:
cultivated) soils have higher PI values than do soils on forested
sites. Because our land-use shapefile also contained data on
crops, we were also able to compile data on the mean PI values
for soils cultivated to various crops as of 2009.

In addition, PI values were compared with and correlated to
soil productivity values for the state of Illinois, as published in
Odell and Oschwald (1970). This Cooperative Extension Ser-
vice publication lists productivity indexes for most soil series
in Illinois. For each soil series in Illinois, we statistically corre-
lated each of the following variables (reported as crop yields):
(i) grain crops, basic management; (ii) forage crops basic man-
agement; and (iii) annual timber growth per acre (deciduous)
with the PI for the same soil. The former data are reported by
soil series, whereas the PI is determined by taxonomic subgroup
as modified by texture family.

Last, we correlated the PI with crop yield data for Penn-
sylvania, Ohio, Tennessee, Kentucky, Indiana, Michigan, Illi-
nois, Wisconsin, Iowa, Missouri, and Minnesota. These states
were chosen to minimize the impact of irrigation on yields, as
would commonly be the case in the western United States or the
Great Plains. (The PI assumes that soils are not irrigated.) We
accomplished this task by first obtaining data on mean county-
wide crop yields, as reported by the USDA National Agriculture
Statistics Service for the year 2009 (USDA-NASS, 2011b).

Generally, we only used data for the major crops produced in
each of these states (Table 6). To correlate PI data with crop
yield, we determined the PI values of all land parcels in the
county that had that crop in that year and then summarized these
data by county using zonal statistics in ESRI ArcMap 9.3 to
calculate a countywide mean PI (for all parcels that had each
particular crop). Crop coverages were obtained from 2009 land-
use data, specifically, the crop data layer (USDA-NASS, 2011a).
These crop specific, mean, county-level PI values were then com-
pared with the county yield values reported by USDA-NASS
(2011b) using Spearman’s rank correlation coefficient (Rs). We
also calculated linear regression relationships and output scat-
terplots of the data to further examine these relationships.
Summary data were calculated by crop and by state, as well as
for corn, wheat, and soybeans, for the 11 states combined.

Application
Mapping PI values was a key part of this research; maps

can indicate the use and efficacy of the index, as they have done
for the DI (Schaetzl et al., 2009). To that end, we joined our PI
data values to various statewide SSURGO soil grids. The grids
were created by rasterizing county-scale SSURGO files from
the NRCS soil data mart (http://soildatamart.nrcs.usda.gov/),
seaming them together into a statewide mosaic, and then re-
sampling them to create a larger national-extent grid file. The PI

TABLE 3. Great Group PI Modifiers*

Great Group Modifier Name†
Change Made to
Base PI Value Justification

And- Gel- Hist- Hum- +2 See Table 2
Eutr- +2 Definition implies high productivity and pH
Moll- +2 Increased amounts of organic matter
Plagg- +2 Implies long-continued manuring and mixing
Anthr- Arg- Calc- Calci- Fluv-
Umbr- Vitr-

+1 See Table 2

Melan- +1 Implies darker colors and increased amounts of organic matter
Somb- +1 Implies subsoil organic matter accumulations
Verm- +1 Worm activity is commonly associated with fertile soils of good

tilth and high organic matter contents
Dur- j1 See Table 2
Acr- j1 Abnormally low CEC in Oxisols
Fragi- Fragloss- j1 Fragipan restricts rooting depth and implies low pH
Hal- j1 High amounts of sodium inhibit most types of plant growth
Kand- Kan- j1 Kandic horizon is inherently low in productivity and CEC
Natr- Na- j1 High amounts of sodium inhibit most types of plant growth
Pale- j1 Implies old age and long-term weathering and pedogenesis
Petr- j1 Petrocalcic horizon restrict rooting depth
Plac- j1 Placic horizon implies acidic conditions and restricted rooting
Plinth- j1 Plinthite is inherently infertile and often restricts rooting
Sal- j1 High amounts of soluble salts inhibit most types of plant growth
Sphagn- j1 Highly acidic Histosols
Sulf- j1 Highly acidic materials within the solum
Dur- Psamm- j2 See Table 2
Dystr- j2 Definition implies low productivity and pH
Nadur- j2 Combination of Natric (j1) and Duripan (j1)
Quartz- j2 Quartz-rich sands are inherently infertile

*Modifiers not shown here have no effect on the base PI value.
†Names in italics are obsolete terms used in versions of Soil Taxonomy that were published before 1999.We included them in our system so older soil

names could also be fit to the PI.
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TABLE 4. Subgroup PI Modifiers*

Subgroup Modifier Name†
Change Made to Base

PI Value Justification

Andaqueptic Andeptic Andic Aquandic Haploxerandic
Udandic Ustandic Ustivitrandic Vitrandic Vitric
Vitritorrandic Vitrixerandic

+2 See Table 2 (Vitr-) and Table 3 (And-)

Aquollic Borollic Calcixerollic Hapludollic Haploxerollic
(in Aridisols) Haplustollic Mollic Rendollic Udollic
Ustollic Xerollic

+2 See Table 3 (Moll-) and Table 2 (Rend-)

Calciargidic Calcic Calcidic Calciorthidic Haplocalcidic +2 See Table 2 (Calc- and Arg-)
Plagganthreptic +2 See Table 3 (Plagg-)
Pachic +2 Thick A horizon with more organic matter

than is typical
Humic Humaqueptic +2 Increased amounts of organic matter
Histic Ruptic-Histic +2 Increased amounts of organic matter
Aquertic Ruptic-Vertic Udertic Ustertic Vertic +2 Vertic characteristics indicate enhanced CEC

and increased organic matter content
Alfic Aqualfic Argiaquic Argic Argidic Boralfic

Haplargidic Haploxeralfic Ruptic-Alfic Ruptic-Argic
Udalfic Ustalfic Xeralfic

+1 Illuvial clay in B horizon probably increases CEC
and water-holding ability; see also Table 2 (Arg-)

Anthraquic Anthropic +1 Increased amounts of organic matter and P
Cumulic +1 Thicker A horizon and probably increased

organic matter
Fluvaquentic Fluventic Torrifluventic

Udifluventic Ustifluventic
+1 See Table 2

Lamellic +1 Lamellae enhance nutrient-holding capacities
in sandy soils

Sombric +1 See Table 3
Thapto-Histic +1 Buried organic materials provide nutrients to

growing plants
Umbric +1 See Table 2
Vermic +1 See Table 3
Durixerollic j1 Combination of Duric (j1) and Mollic (+2).
Acraquoxic Acrudoxic Acrustoxic Albaquultic Aquultic

Orthoxic Oxic Ruptic-Ultic Torroxic Udoxic Ultic Ustoxic
j1 Oxic/kandic mineralogy implies low CEC

Alic j1 High amounts of aluminum reduce productivity
Arenic j1 Sandy, generally infertile soils
Duric Duridic Durinodic Durorthidic

Haploduridic Petronodic
j1 See Table 2

Fragiaquic Fragic j1 See Table 3
Halic j1 See Table 3
Kandic Kanhaplic j1 See Table 3
Natric j1 See Table 3
Placic j1 See Table 3
Plinthaquic Plinthic j1 See Table 3
Ruptic-Lithic Ruptic-Lithic-Entic

Ruptic-Lithic-Xerochreptic
j1 Shallow bedrock limits rooting volume, but not as

extreme as Lithic (j2) subgroups
Salic Salidic Salorthidic j1 See Table 3
Sodic j1 High amounts of sodium inhibit most types of

plant growth
Sphagnic j1 See Table 3
Sulfaqueptic Sulfic Sulfuric j1 See Table 3
Dystric j2 See Table 3
Grossarenic j2 Thick sands at surface imply reduced productivity

and low CEC
Lithic j2 Shallow bedrock reduces rooting volume
Petrocalcic Petrocalcidic j2 Petrocalcic horizon is a rooting impediment,

like bedrock
Petroferric j2 Shallow iron pan reduces rooting volume
Petrogypsic j2 Petrogypsic horizon is a rooting impediment,

like bedrock
Psammentic Torripsammentic Psammaquentic

Quartzipsammentic
j2 See Table 2

*Modifiers not shown here have no effect on the Base PI value.
†Names in italics are obsolete terms used in versions of Soil Taxonomy that were published before 1999.We included them in our system so older soil

names could also be fit to the PI.
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FIG. 1. A standard USDA textural triangle showing the PI
modifiers used for the various texture families.

FIG. 2. Map of Lower Michigan showing land use as of 2009 and
the locations of the 1,000 points at which we determined PI
values. Blue areas are water bodies; white areas are classified as
‘‘other’’ or, more commonly, urban land uses.

TABLE 5. Mean PI Values for Sites of Different Crops and
Land Uses in Lower Michigan as of 2009*

Crop or Land Use Mean PI S.D.

All field crops 10.94 2.36
Alfalfa 10.35 2.10
Corn 10.85 2.35
Dry edible beans 12.25 2.12
Potatoes 10.33 2.52
Soybeans 11.27 2.06
Sugar beets 14.00 0.00
Winter wheat 10.43 3.38

All forest 7.77 3.21
Deciduous forest 8.17 3.15
Evergreen forest 5.87 2.90
Mixed forest 6.18 2.75

*Based on the sample of 1,000 random points (see above).

FIG. 3. Scatterplots showing the relationships between
productivity indexes of grain and forage crops, as well as timber
growth, versus PI, for soils in Illinois.
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values for each soil taxonomic subgroup were joined to these
files in a GIS using the MUKEY attribute, enabling us to map
and examine PI values across landscapes.

RESULTS AND DISCUSSION

Land Use Versus PI
Of our 1,000 randomly located points within the Lower

Peninsula of Michigan, 236 fell on cropped land, whereas 319
were on forested parcels (Fig. 1). Our statistical and GIS anal-
yses clearly showed that soils with higher PI values are more
often farmed to row or forage crops than they are forested. The
mean PI value for the cropped land was much higher (10.94)
than for forested land (7.77) (Table 5). Using a t test and as-
suming unequal variances, this difference was highly significant
at P G 0.0001. Standard deviation values were also quite low for
the land-use categories (Table 5), illustrating not only the effi-
cacy of the PI but also the clarity of local knowledge that farm-
ers possess about which soils are best for particular crops. These
data indicate that the PI values do mimic productivity in a
general sense, and that, at least in Lower Michigan, land owners
are preferentially farming the more fertile soils. Table 5 further
illustrates that some of the more nutrient-demanding crops had
mean PI values that exceeded 10.00, and that, as expected, PI
values for evergreen coniferous forest were the lowest of any
land-use category.

Soil Productivity Values Versus PI
We used data on productivity (grain crops, forage crops,

and timber growth), as determined for more than 350 soil se-
ries in Illinois by Odell and Oschwald (1970) to further evalu-
ate the accuracy and efficacy of the PI. The PI values were
calculated for the same soil series that Odell and Oschwald
(1970) used, and the data compared statistically. Recall that the
PI of Odell and Oschwald (1970)Vdetermined to seriesV
should be more accurate in terms of prediction than the PI,
which is only determined to texture family.

Results show that the PI correlates extremely well with the
PI of Odell and Oschwald (1970) (Fig. 3). Correlations were
better for grain crops than for tree growth probably because the
latter are drawing on soil resources and affected by soil condi-
tions much farther below the surface than are traditionally ex-
amined by soil mappers, for example, Host et al. (1988). A

FIG. 4. Scatterplots showing the relationships between
countywide crop yields (2009, corn, soybeans, and winter wheat)
and mean PI values for all parcels in each county that were
planted to that crop in 2009.

TABLE 6. Spearman Rank Correlation Coefficient (Rs) Values for Relationships Between Mean County PI and Mean County
Crop Yields (2009) by State

Rs Value From Linear Regression Equation

State Corn Soybeans Winter Wheat Oats Other Crops

Iowa 0.28 0.24 V 0.36
Illinois 0.73 0.75 0.78 V
Indiana 0.57 0.59 0.62 V
Kentucky 0.38 0.15 0.19 V
Michigan 0.50 0.30 0.46 0.25 0.02 (sugar beets)
Minnesota 0.29 0.23 V 0.80 0.24 (sugar beets)
Missouri 0.18 0.21 0.06 V
Ohio 0.54 0.45 0.67 V
Pennsylvania 0.12 0.18 0.47 0.06
Tennessee 0.30 0.05 0.20 V
Wisconsin 0.55 0.78 0.60 0.31 0.68 (alfalfa)
All states combined 0.57 0.31 0.23
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second source of error in the timber growth data may involve
abnormally wet soils. The PI does not take soil wetness or water
table effects into consideration, and thus extremely wet soils may
rate high in the PI but be poor for tree growth. This caveat is less
of a factor for the growth of traditional crops; if soils are too
wet for a particular crop, they are typically drained.

Crop Yields Versus PI
For all 11 states and 4+ crops, Spearman rank correlation

coefficients, calculated for the relationships between crop yields
and PI values, were always positive (Table 6). Likewise, com-
piled data for all 11 states, shown as scatterplots in Fig. 4, also
show excellent relationships between yields of corn, soybean,
and winter wheat with countywide mean PI values of soils that
were planted to that crop in 2009. Given the variation that can
be expected to occur in management practices, for example, soil
amendments, irrigation, as well as the natural climate variability
that existed across these five states in 2009, these results are
extremely promising. Indeed, many of the outliers in the scat-
terplots are for soils with low PI values but generally high yields
(Fig. 4) probably because of aggressive management practices

that the PI is unable to control for. Data and correlations for
individual crops in specific states are even more impressive
(Fig. 5; Table 6).

Mapping Applications
To display productivity values in landscape-scale applica-

tions, we used a GIS to map PI values at various scales. The
color ramp we chose to use for the PI displayed ‘‘intuitive’’ and
contrasting colors along the PI 0-to-19 scale. Named ‘‘partial
spectrum’’ in ArcGIS, this color symbology ranges from yellow
for low PI values (most infertile soils) through orange, red,
purple, and then blue (most fertile soils). Applying this color
ramp to a soil map mosaic of 11 Midwestern states, derived
using SSURGO-level county soil data, resulted in a map of soil
productivity across the region (Fig. 6). Many of these patterns
would not have been obvious before this study, whereas others
are more obvious; for the latter, the PI gave these patterns ad-
ditional spatial detail. In this map (Fig. 6), areas of high pro-
ductivity, for example, the loess-covered Mollisol-dominated
plains of Iowa, central Illinois, and southeastern Minnesota, show
up clearly. Yellow and light-orange areas of lower productivity

FIG. 5. Scatterplots showing the relationships between countywide yields for selected crops and states and mean PI values for all
parcels in each county that were planted to that crop in 2009.
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FIG. 7. Soil productivity map of south-central Wisconsin.

FIG. 6. Map of soil productivity, based on the PI, for 11 Midwestern states.
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FIG. 8. Soil productivity map showing most of Pennsylvania.

FIG. 9. Soil productivity map of the Wisconsin-Iowa border area near the confluence of the Wisconsin and Mississippi rivers.
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are also obvious, for example, for the Central Sand Plains of
Wisconsin (Hole, 1976; Clayton and Attig, 1989), the High
Plains sandy province of northern Lower Michigan (Schaetzl
and Weisenborn, 2004; Schaetzl et al., under review), the
Cumberland/Allegheny Plateau regions in Kentucky and Penn-
sylvania, and the Ozark Plateau of Missouri.

On closer inspection, via larger scale maps, the efficacy and
applicability of the PI become even more apparent; we cite a
few examples here. In south-central Wisconsin (Fig. 7), soil
PI values vary widely. Sandy Psammaquents and Udipsaments
dominate the Central Sand Plains, where PI values typically are
4 (yellow). Fertile silty Argiudolls formed in loess show up in
Fig. 7 as deep purple (PI = 17). Intermediate sites, depicted in
various shades of red, are Hapludalfs (PI = 11 or 12). The light
oranges of Psammentic Hapludalfs (PI = 8) are visible at a few
locations in the north-central part of the map. Our experience
in this area suggests that these values and map colors mimic
the natural soil productivity of the area quite well.

An examination of the PI map for western Pennsylvania
is also extremely enlightening. The glaciated sections of the
state, occupying the northeastern and northwestern corners of
the map have higher productivity values than does the ungla-
ciated Appalachian Plateau region to the south (Fig. 8). The
deeper red colors in the northwestern part of the map are fine-
loamy Fragiaquepts with PI values of 9. Slightly more fertile
fine-loamy Fragiaqualfs (PI = 10) are common on landscapes to
the immediate south; these soils are shown in purple-red colors.
In the northeastern part of the map, the glaciated plateau region
shows lower productivity values; many orange hues are ap-
parent. Here, loamy-skeletal Dystrudepts (PI = 7) and coarse-
loamy Fragiudepts (PI = 8) dominate the uplands. The bright
yellows of the Appalachian Plateau occupy much of the central
part of the map. Most of the soils here are fine Endoaquults
(PI = 4), fine-loamy Fragiudults (PI =4), loamy-skeletal Dys-
trudepts (PI = 7), and fine-loamy Hapludults (PI = 5). The bright
pink colors evident in some of the valleys of the Ridge and
Valley province are fine Typic Hapludalfs and fine-loamy Ultic
Hapludalfs (PI = 10); they stand apart because of their limestone
parent materials. It is clear that the variation in productivity,
largely influenced by parent materials in this case, is captured
quite well by the PI.

Our last example shows that the PI holds up at even me-
dium and large scales. Figure 9 shows the area near the con-
fluence of the Wisconsin and Mississippi rivers in southwestern
Wisconsin and eastern Iowa. This unglaciated area is bedrock
controlled and deeply dissected. Loess mantles the flattest up-
lands, where it exceeds 2 to 3 m in thickness (Leigh and Knox,
1994; Scull and Schaetzl, 2011; Syverson et al., 2011). Pro-
ductivity variation across this landscape is great but, nonethe-
less, is predictable and follows cropping patterns remarkably
well. The most fertile soils are on the broad loess-capped up-
lands, where fine-silty Argiudolls with PI values of 16 are found
(purple polygons). On steeper slopes, the PI drops to 12 and the
map color changes to cyan, where fine-silty Hapludalfs are
mapped on thin loess. Note that, in both Iowa and Wisconsin,
intermediate taxonomic intergrade soils (Mollic Hapludalfs;
PI = 14) are mapped between the two soils mentioned above.
The PI captures this intermediate soil’s intermediate productiv-
ity value, and the GIS map portrays it exceedingly well. Steep
stony rock land in deep narrow valleys is yellow on the map
and has a PI of 0. The red areas on the Mississippi floodplain
and terraces, often at the mouths of major tributary valleys, are
fine-silty Fluvaquents with PI values of 9. Backswamp areas in
the Wisconsin River valley are orange; there are areas of Flu-
vaquents with PI values of 6. This example confirms that the PI

is useful for portraying soil productivity at even large scales, as
long as the soil map from which it is derived is an accurate
representation of the landscape.

CONCLUSIONS
In this article, we introduce a new index of soil productivity.

Unlike other indexes that have similar goals, ours is widely
applicable because the only inputs to the index are taxonomic
soil classification data. Because most counties in the United
States have been mapped at large scale by the NRCS, and these
maps are widely available in digital form, determining and
mapping the PI values of soil landscapes is potentially available
to everyone for everywhere that has a soil map.

We have posted a PI ‘‘join file’’ to the following website:
http://www.drainageindex.msu.edu. This site serves as a clear-
inghouse for GIS join files for both the DI (Schaetzl et al., 2009)
and the PI. A download of the join file from thisWeb site enables
GIS users to link their soil data in a GIS using the MUKEY field
in the attribute table to our internal DI and PI tables.

We acknowledge that PI values may not exactly correlate to
the precise productivity of a particular field or site because of
site-specific management practices and because Soil Taxonomy
was not created specifically to mimic productivity. Nonetheless,
our data clearly show that correlations between the PI and var-
ious measures of soil productivity and crop yields are strong
and, thus, potentially useful in various types of landscape-scale
research.
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