
This article was downloaded by: [Dengsheng Lu]
On: 14 June 2013, At: 13:39
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

GIScience & Remote Sensing
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tgrs20

Mapping impervious surface area in
the Brazilian Amazon using Landsat
Imagery
Guiying Li a , Dengsheng Lu b , Emilio Moran b & Scott Hetrick a
a Anthropological Center for Training and Research on Global
Environmental Change (ACT) , Indiana University , Student
Building 331, 701 E. Kirkwood Ave, Bloomington , IN , 47405 , USA
b Center for Global Change and Earth Observations , Michigan
State University , 1405 S. Harrison Road, East Lansing , MI ,
48823 , USA
Published online: 14 Jun 2013.

To cite this article: Guiying Li , Dengsheng Lu , Emilio Moran & Scott Hetrick (2013): Mapping
impervious surface area in the Brazilian Amazon using Landsat Imagery, GIScience & Remote
Sensing, DOI:10.1080/15481603.2013.780452

To link to this article:  http://dx.doi.org/10.1080/15481603.2013.780452

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tgrs20
http://dx.doi.org/10.1080/15481603.2013.780452
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Mapping impervious surface area in the Brazilian Amazon using
Landsat Imagery

Guiying Lia, Dengsheng Lub*, Emilio Moranb and Scott Hetricka

aAnthropological Center for Training and Research on Global Environmental Change (ACT),
Indiana University, Student Building 331, 701 E. Kirkwood Ave., Bloomington, IN 47405, USA;
bCenter for Global Change and Earth Observations, Michigan State University, 1405 S. Harrison
Road, East Lansing, MI 48823, USA

(Received 12 September 2012; final version received 21 February 2013)

Impervious surface area (ISA) is an important parameter related to environmental
change and socioeconomic conditions, and has been given increasing attention in the
past two decades. However, mapping ISA using remote sensing data is still a challenge
due to the variety and complexity of materials comprising ISA and the limitations of
remote sensing data spectral and spatial resolution. This paper examines ISA mapping
with Landsat Thematic Mapper (TM) images in urban and urban–rural landscapes in
the Brazilian Amazon. A fractional-based method and a per-pixel based method were
used to map ISA distribution, and their results were evaluated with QuickBird images
based on the 2010 Brazilian census at the sector scale of analysis for examining the
mapping performance. This research showed that the fraction-based method improved
the ISA estimation, especially in urban–rural frontiers and in a landscape with a small
urban extent. Large errors were mainly located at the sites having ISA proportions of
0.2–0.4 in a census sector. Calibration with high spatial resolution data is valuable for
improving Landsat-based ISA estimates.

Keywords: impervious surface area; Landsat; spectral mixture analysis; urban–rural
landscape

1. Introduction

Impervious surface area (ISA) is defined as any man-made land surface that water cannot
infiltrate. It is an important parameter in environmental, demographic, and socioeconomic
related research (Schueler 1994; Arnold and Gibbons 1996; Zug et al. 1999; Brabec,
Schulte, and Richards 2002; Lu et al. 2010; Myint et al. 2010). Therefore, mapping of ISA
has seen increased attention in the past two decades (Slonecker, Jennings, and Garofalo
2001; Brabec, Schulte, and Richards 2002; Slonecker and Tilley 2004; Weng 2007; Tullis
et al. 2010; Weng 2012). ISA has often been mapped using per-pixel based classification
methods, such as maximum likelihood (Goetz et al. 2003; Lu et al. 2012). Because of the
complexity of urban landscapes, the diversity of construction materials, and the con-
straints of remotely sensed data, classification-based ISA results are often poor, especially
for area estimates in urban–rural landscapes (Lu, Moran, and Hetrick 2011). Thus, the
monitoring of urban expansion and area estimation of urbanization generated high
uncertainty (Lu, Moran, and Hetrick 2011). Since Ridd (1995) proposed the V–I–S
(vegetation–impervious surface–soil) model, much progress has been made to improve
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ISA mapping performance using spectral decomposition methods (Wu and Murray 2003;
Wu 2004; Lu and Weng 2006).

Many methods and techniques for mapping ISA distribution with satellite images have
been summarized in the literature (e.g., Lu and Weng 2006; Lu et al. 2012; Weng 2012).
Previous studies on mapping ISA mainly concentrated on large cities (Wu 2004; Lu and
Weng 2006) because of their importance. However, urban expansion often occurs in
urban–rural frontiers (Lu, Moran, and Hetrick 2011). It is necessary to accurately map
ISA distribution and monitor its dynamic change in the urban–rural frontiers, but how to
effectively estimate the ISA in such a complex landscape has not been fully examined.
Therefore, the objective of this research was to examine how different urban landscapes
with various urban extents and patterns in the Brazilian Amazon affected ISA mapping
performance.

2. Overview of ISA mapping with linear spectral mixture analysis

Although many methods have been developed for mapping ISA (Lu et al. 2012; Weng
2012), the linear spectral mixture analysis (LSMA) has been regarded as the most
appropriate method (Wu 2004; Lu and Weng 2006; Lu, Moran, and Hetrick 2011;
Weng 2012). One critical step using the LSMA is to select good-quality endmembers
(pure materials). Different image transform methods such as minimum noise fraction
(MNF) transform are often used to convert the original Landsat multispectral data into a
new dataset so that major information is concentrated in just the first three components
(Lu and Weng 2006). The endmembers are then identified from the scatterplots of the first
three MNF components, assuming that endmembers are located at the vertices of the
scatterplots (Lu and Weng 2004). In an urban landscape, four endmembers – high-albedo
object, low-albedo object, green vegetation, and soil are often used and they can be
identified from the scatterplots of MNF components (Lu and Weng 2004). A constrained
least-squares solution is then used to unmix the Landsat multispectral image into four
fractional images. Much previous literature has detailed the LSMA approach (Wu and
Murray 2003; Lu and Weng 2004), thus, this paper will not provide a detailed description.

As previous research has indicated that ISA is mainly concentrated in the high-albedo
and low-albedo fraction images (Wu and Murray 2003; Lu and Weng 2006; Lu, Moran,
and Hetrick 2011), ISA can be viewed as a linear combination of high-albedo and low-
albedo objects. Bright ISA and some bare soils are often concentrated in the high-albedo
fraction image, and dark ISA, water/wetland, and shadows are often concentrated in low-
albedo fraction images. One critical step in extracting ISA is to remove the non-ISA
components in the high-albedo and low-albedo fraction images. Lu and his colleagues
have explored different methods, such as the integration of land surface temperature and
unsupervised classification, to remove the non-ISA pixels (Lu and Weng 2006; Lu,
Moran, and Hetrick 2011).

3. Methods

The cities of Santarém in Pará State and Lucas do Rio Verde (hereafter referred to as
Lucas) in Mato Grosso State, Brazil, were selected for this study (Figure 1). The Santarém
study area is located at the confluence of the Tapajós and the Amazon rivers. The area was
the site of one of the three most important prehistoric populations studied to date in the
Amazon. The city of Santarém was officially founded by Jesuit priests over 300 years ago
and is now an important port city. Lucas is connected to Santarém and to the heart of
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Brazil’s soybean-growing region at Cuiabá via the BR-163 highway, which runs through
Lucas. This settlement growth accompanied the beginnings of soy expansion in Mato
Grosso as a whole and led to the establishment of Lucas County (the area had been part of
two other counties) in 1982. Lucas has a relatively short history and small urban extent
but has experienced rapid urbanization. According to the 2010 census data, population in
Santarém city was 204,129 and in Lucas city was 42,068 (http://www.ibge.gov.br/cida-
desat/topwindow.htm?1).

The framework for mapping ISA from Landsat Thematic Mapper (TM) images is
illustrated in Figure 2. The major steps include (1) developing four fraction images from a
TM multispectral image using LSMA approach, (2) developing initial dark and bright ISA
images using thresholds on low-albedo and high-albedo fraction images, respectively, (3)
extracting a TM spectral image for both initial dark and bright ISA pixels and conducting
an unsupervised classification, respectively, (4) generating a per-pixel based ISA image by
combining dark and bright ISA images, (5) generating a fraction ISA image by combining
the per-pixel based ISA image and the sum of high-albedo and low-albedo fraction
images, and (6) evaluating and comparing the per-pixel and fraction ISA images with
the QuickBird-derived ISA image.

Figure 1. Study areas – Santarém in Pará State and Lucas do Rio Verde in Mato Grosso State.
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3.1. Image collection and preprocessing

A Landsat 5 TM image (path/row: P227/R062) acquired on 29 June 2010 and a
QuickBird image acquired on 25 June 2008 for Santarém, and a Landsat 5 TM image
(path/row: P227/R069) acquired on 22 May 2008 and a QuickBird image acquired on 20
June 2008 for Lucas were used in this research. Both TM images with spatial resolution of
30 m were geometrically rectified into Universal Transverse Mercator (UTM) coordinate
system (UTM zone 21 for both study areas) with root mean square errors (RMSEs) of
<0.5 pixels. Radiometric and atmospheric calibration for both TM images was implemen-
ted with the dark-object subtraction method (Chavez 1996; Chander, Markham, and
Helder 2009) and the results were re-scaled to 8-bit data format (i.e., data range between
0 and 255). The QuickBird-derived ISA data were used for evaluation of the TM-derived
ISA estimates based on the 2010 Brazilian census sector polygons.

3.2. Development of impervious surface data with Landsat images

In this research, four endmembers – high-albedo object, low-albedo object, green vegeta-
tion, and soil – were identified from three MNF components, which were transformed
from the Landsat TM multispectral image (Lu and Weng 2006). Four fraction images
were then developed from the TM multispectral image using the constrained least-squares
solution. In order to remove the non-ISA pixels in the high-albedo and low-albedo
fraction images, thresholds were selected separately from the high-albedo and low-albedo
fraction images based on the comparison of these fraction images and the QuickBird-

Landsat TM imagery

Minimum noise
fraction transform

Selection of four endmembers:
high-albedo, low-albedo, green

vegetation, and soil

Unmixing TM multispectral
image with constrained least

squares solution

Thresholding on low-albedo
image and then extracting TM

spectral image

Four fraction images: high-albedo
low-albedo, green vegetation, and soil

Combination of per-pixel impervious
surface image and the high-albedo and low-
albedo images to generate fractional image

Fractional impervious
surface images

Thresholding on high-albedo
image and then extracting TM

spectral image

Extracting dark impervious
surface by removing shadows
and water through ISODATA

Extracting bright impervious
surface by removing bare soils

through ISODATA

Evaluation of impervious surface
results with QuickBird image

Combination of both dark- and bright-impervious surface
images to generate a per-pixel impervious surface image

Figure 2. Strategy of mapping impervious surface distribution with Landsat TM images.
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derived ISA images. The TM spectral signatures for bright and dark ISA pixels were
extracted and then classified into 60 clusters using cluster analysis (i.e., ISODATA). The
analyst examined each cluster to determine whether the cluster was ISA or not so that
non-ISA pixels were removed.

After non-ISA pixels were removed from the dark- and bright-ISA images, both
images were combined to generate a per-pixel based ISA image. Meanwhile, the frac-
tional ISA image was extracted from the sum of the high-albedo and low-albedo fraction
images by masking non-ISA pixels out from the per-pixel ISA image. In this way, two
products of ISA images – pixel-based and fraction-based ISA images were extracted.

3.3. Evaluation of impervious surface images with QuickBird images

Both per-pixel and fractional ISA products were evaluated with the reference data
developed from QuickBird images for both study areas. Our previous research has
indicated that the hybrid method can successfully extract ISA data from very high spatial
resolution satellite images such as QuickBird (Lu, Hetrick, and Moran 2011). The hybrid
method is based on the combined use of a thresholding technique, cluster analysis, and
manual editing. This method is detailed in Lu, Hetrick, and Moran (2011) and the major
steps are summarized as following: (1) producing the normalized difference vegetation
index (NDVI) image from QuickBird red and near-infrared (NIR) bands and then mask
vegetation out with the selected threshold on the NDVI image; and mask water bodies out
with the threshold on the NIR band; (2) extracting spectral signatures of the non-vegeta-
tion pixels, and using cluster analysis to classify the extracted spectral signatures into 50
clusters. The analyst was responsible for merging the clusters into ISA and other land
cover classes; (3) manually editing the extracted ISA image to eliminate the non-ISA such
as bare soils, shadows, and wetlands which were included in the ISA class due to spectral
confusion. In order to make sure the derived ISA data had sufficiently high accuracy, a
total of 400 test samples were selected with the random sampling method in Santarém and
450 test samples for Lucas due to its relatively small proportion of urban areas. The
analyst examined each test sample plot to decide whether it was correctly classified as ISA
or not (Lu, Hetrick, and Moran 2011).

The evaluation of Landsat-derived ISA results was conducted based on the 2010
census sector scale of analysis. All the ISA data from Landsat TM images and from
QuickBird image for both study areas were calculated for each census sector based on per-
pixel and fractional ISA images. Five ISA categories – very low, low, medium, high, and
very high were grouped based on reference data ranges: less than 0.2, [0.2–0.4], [0.4–0.6],
[0.6–0.8] and greater than 0.8 (Note: [0.2–0.4] means the data range of greater than or
equal to 0.2 but less than 0.4). In addition to the analysis of overall errors, residue and
RMSE at census sector scale for each ISA category was also conducted, and expressed as

Residue for xi ¼ xei � xri (1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼ 1ðxei � xriÞ2
n

s
(2)

where xei and xri are estimates and reference values for sector i and n is the number of
sectors in a study area. A scatterplot consisting of ISA estimates and reference data was
used to examine their relationship and to analyze the potential solution to calibrate the
estimates.

GIScience and Remote Sensing 5

D
ow

nl
oa

de
d 

by
 [

D
en

gs
he

ng
 L

u]
 a

t 1
3:

39
 1

4 
Ju

ne
 2

01
3 



4. Results and discussion

4.1. Analysis of fraction images

Development of high-quality fraction images is critical for generating accurate ISA data.
The four fraction images which were developed from Landsat TM multispectral images
using LSMA are illustrated in Figure 3, indicating that ISA is mainly concentrated on the
high-albedo and low-albedo fraction images. In the high-albedo fraction image, bright
ISA and some bare soils (especially in Lucas) are highlighted (see Figure 3a and 3e),
while the low-albedo fraction image highlights dark ISA (mainly roads in Santarém) and
water bodies (see Figure 3b and 3f). This figure also indicates a large proportion of dark
ISA, especially roads in Santarém, but limited areas in Lucas. This situation is related to
different construction materials in an urban landscape. As shown in Figure 4, the
impervious surface materials appearing as white and light yellow in the color composites
(Figure 4) have high spectral signatures in the TM multispectral image, thus, they mainly
reflect high fraction values in the high-albedo fraction image (Figure 3a and 3e). Large
amounts of impervious surface materials in Santarém have dark gray (e.g., roads) and dark
brown colors (e.g., building roofs) (see Figure 4a) and they have low spectral signatures,
thus these ISA pixels are mainly distributed in the low-albedo fraction image (Figure 3b).
In contrast, Lucas has impervious surface materials in cyan/aquamarine or white color on
the color composite (Figure 4b), thus, these impervious surfaces have relatively high
spectral signatures, and they are mainly reflected in the high-albedo fraction image, and
very limited areas are in the low-albedo fraction image (Figure 3f). Figure 3 also
illustrates that no ISA is found in the green vegetation fraction image because ISA has
significantly different spectral characteristics than vegetative cover. However, some dirty
roads in rural regions appear in the soil fraction image because of their similar spectral
features with bare soils. This is one source of uncertainty of ISA estimation in rural
regions.

4.2. Analysis of impervious surface results

The reference data for evaluating Landsat-derived ISA estimates were developed from the
QuickBird images using the hybrid method, as illustrated in Figure 5. Based on analysis
of test samples, overall accuracies of 98.7% for Santarém and of 98.2% for Lucas were
obtained. Therefore, the QuickBird-derived ISA data provided sufficiently accurate refer-
ence data for evaluating the TM-derived ISA results. Figure 5 indicates that Santarém city
is a developed urban landscape with large urban extents, but Lucas is a developing urban
landscape with much smaller urban extents and a large proportion of roads in urban–rural
frontiers.

The fractional ISA images in the Santarém and Lucas study areas (see Figure 6)
indicate that a large proportion of the Santarém study area has high fractional values, and
conversely, a large proportion of Lucas study area has low fractional values, implying that
different urban landscapes affect ISA distribution patterns. Santarém has a long history of
city development with a relatively large urban extent and dense urban ISA, while Lucas
has a short history with a relatively small urban extent and relatively sparse urban ISA
distribution. Santarém has obvious ISA change trends, from highest fraction values in the
urban landscape to gradually decreasing fraction values in urban–rural frontiers in the
southeast and western parts of the city. In Lucas, only a small area in the northern part of
the city has relatively high fraction values.

6 G. Li et al.
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Figure 3. Four fraction images – high albedo, low-albedo, green vegetation, and soil in Santarém –
a, b, c, d and in Lucas – e, f, g, h, which were developed from Landsat TM images with the spectral
mixture analysis approach.
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Analysis of residuals indicated that the per-pixel based results overestimated consid-
erably ISA in both study areas and the fraction-based method considerably reduced this
problem, especially in Lucas (see Figure 7). Overall, the residuals reached a peak when
ISA in a sector was around 0.4 in Santarém, and when ISA was around 0.2 in Lucas for
the per-pixel based results. For the fraction-based method, ISA was still overestimated for
the majority of the sectors in Santarém, but in Lucas, when ISA in a sector was less than
0.2, ISAwas mainly overestimated, but after ISA in a sector was greater than 0.6, ISAwas
underestimated.

Analysis of the RMSE results at fractional and per-pixel scales for both study areas
indicated that per-pixel based results had much higher estimation errors for each ISA
category than fraction-based results, except when ISA was in the very high category in
Lucas (see Table 1). For both study areas, the estimate errors for per-pixel based results
had the highest errors when ISA in a sector fell in the low and medium categories, and had

Figure 4. False-color composites from QuickBird images showing the complexity of impervious
surface distribution in Santarém and Lucas.

Figure 5. Impervious surface images in Santarém (a) and Lucas (b), which were developed from
QuickBird images.

8 G. Li et al.
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Figure 6. Impervious surface images in Santarém (a) and Lucas (b), which were developed from
Landsat TM images using the fraction-based method.

Figure 7. Comparison of residual distribution between fraction-based and per-pixel based methods
for Santarém (Left) and Lucas (Right) study areas.

Table 1. Assessment of impervious surface estimation results from Landsat TM images for both
study areas.

Category of ISA Data ranges

Santarém Lucas

Fraction Per-pixel # Fraction Per-pixel #

Very low <0.2 0.108 0.193 27 0.130 0.255 21
Low 0.2–0.4 0.163 0.343 44 0.236 0.477 15
Medium 0.4–0.6 0.161 0.351 67 0.072 0.409 21
High 0.6–0.8 0.147 0.259 95 0.122 0.307 18
Very high >0.8 0.100 0.134 8 0.186 0.128 2
Total 0.149 0.295 241 0.146 0.361 77

Note: # represents number of census sectors at each ISA category.
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lowest errors when ISA fell in the very high category. As the proportion of ISA in a
census sector increased, from low to very high, the RMSE in per-pixel based results
decreased in both study areas. For fraction-based results, the RMSE gradually decreased
from the low to very high category in Santarém, but the RMSE in Lucas was lowest when
ISAwas in the medium category, and had relatively high RMSE when ISAwas in the very
high category. Figure 7 indicates that when ISA fell within 0.4–0.6 in Lucas, the residuals
had positive and negative values, thus, the overall estimate had high accuracy in this
category. When fraction values were greater than 0.6, residuals became negative, implying
that ISA was underestimated.

The RMSE at per-pixel level was higher in Lucas than in Santarém, maybe due to the
relatively smaller urban extent and lower ISA proportion in a unit in Lucas, as shown in
Figure 5. This highlights the potential for problems in using the per-pixel based method
for ISA estimation when the study area has a small urban extent or is in an urban–rural
landscape. In the fractional ISA results, ISA estimates had the highest estimation error at
the low category for both study areas, implying the difficulty in accurately extracting ISA
in urban–rural or rural landscape due to the confusion of ISA and bare soils, and the
dominance of non-ISA land covers within a pixel. The lowest RMSE in Santarém and
relatively high RMSE in Lucas when ISA was in very high category imply the different
impacts of urban patterns on ISA estimation.

The overestimation of ISA in Santarém may be due to (1) the underestimation of
reference data from the 2008 QuickBird image, because it was acquired 2 years before the
2010 TM image, (2) the spectral confusion of dark ISA with shadows and water resulted
in overestimation of dark ISA and (3) the spectral confusion of some bright ISA and bare
soils during the dry season resulted in the overestimation of some bright ISA, especially in
suburban areas. For per-pixel based results, a large proportion of the overestimation is due
to the mixture of ISA and other land covers within a pixel. In Lucas, when ISA accounts
for greater than 0.6 in a census sector, ISA is underestimated when the fraction-based
method is used. This is mainly due to the difficulty in effectively extracting ISA under tree
cover and shadow areas cast by trees and tall buildings. As shown in Figure 3f, very

Figure 8. Relationship between estimates from Landsat TM image and reference data from
QuickBird images for Santarém (Left) and Lucas (Right).
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limited ISA was extracted in the low-albedo fraction image in Lucas, as compared to
Figure 3b for Santarém. The situation of overestimation when ISA was in low value and
of underestimation when ISA was in high value is similar to previous research (Wu and
Murray 2003; Lu and Weng 2006; Lu, Moran, and Hetrick 2011).

The above analysis indicates the overestimation of ISA, especially in per-pixel based
results. However, the relationship between estimate and reference shown in Figure 8
indicates that there is a good linear relationship between the estimate and reference data in
both per-pixel based and fraction-based methods. Therefore, the estimates can be
improved by establishing a linear regression model through integrating the ISA estimates
and reference data from a high spatial resolution image. Our previous research has
confirmed the importance of implementing the calibration of Landsat-derived ISA esti-
mates for improving ISA estimation performance (Lu, Moran, and Hetrick 2011). In
particular, this kind of calibration is necessary when the study area contains a large
proportion of urban–rural landscape and accurate area statistics are required. Because
different sources of remote sensing data are available, integrated use of multi-sensor and
multi-spatial resolution images have been used to improve ISA mapping performance
(Yang et al. 2009; Tullis et al. 2010; Lu, Li, et al., 2011).

5. Conclusions

This research identified the challenges of ISA estimation using Landsat TM images in
urban–rural frontiers. The per-pixel based method considerably overestimated the ISA
results and the fraction-based method considerably reduced this problem. Overall, frac-
tion-based results had RMSE of 0.15 for both study areas, and per-pixel based results had
RMSE as high as 0.30 in Santarém and 0.36 in Lucas. When emphasis is on area
statistical results, the fraction-based ISA mapping method is recommended. If reference
data are available, calibration of the estimates from Landsat TM images is necessary,
especially when the study areas cover urban–rural landscapes. This research proposes a
promising method for mapping fractional ISA distribution in the complex urban–rural
landscape in the Brazilian Amazon, and can be easily transferred to other study areas.
More research is needed to calibrate the ISA estimation through integration of very high
spatial resolution images.
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