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Abstract

A hierarchical-based classification method was designed to
develop time series land-use/land-cover datasets from
Landsat images between 1977 and 2008 in Lucas do Rio
Verde, Mato Grosso, Brazil. A post-classification comparison
approach was used to examine land-use/land-cover change
trajectories, which emphasis is on the conversions from
vegetation or agropasture to impervious surface area, from
vegetation to agropasture, and from agropasture to regenerat-
ing vegetation. Results of this research indicated that
increase in impervious surface area mainly resulted from the
loss of cerrado in the initial decade of the study period and
from loss of agricultural lands in the last two decades.
Increase in agropasture was mainly at the expense of losing
cerrado in the first two decades and relatively evenly from
the loss of primary forest and cerrado in the last decade.
When impervious surface area was less than approximately
40 km? before 1999, impervious surface area was negatively
related to cerrado and forest, and positively related to
agropasture areas, but after impervious surface area reached

40 km? in 1999, no obvious relationship exists between them.

Introduction
Deforestation has been recognized as an important contribu-
tor to carbon emissions, climate change, and loss of biodi-
versity (Skole et al., 1994; Hirsch et al., 2004; Fearnside,
2005). Since the 1970s, the Brazilian Amazon has experi-
enced high deforestation rates (http://www.obt.inpe.br/
prodes/) largely due to colonization projects initiated in the
1970s and 1980s, road construction, and land-use change
(Moran, 1981; Laurance et al., 2004). Deforestation has
converted large areas of primary forest and cerrado/savanna
to agricultural lands, pasture, successional vegetation, and
agroforestry (Lucas et al., 2000; Roberts et al., 2002; Sano
et al., 2010). Mapping of land-use/land-cover distributions
and monitoring of their changes over time are required for
resource management, i.e., accurate examination of carbon
and water cycling, and evaluation of environmental prob-
lems at different scales (Hirsch et al., 2004; Fearnside, 2005;
Sparovek et al., 2010).

Research on mapping land-use/land-cover distribution
and detecting its change in the Brazilian Amazon has
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attracted increasingly attention since the 1990s. Much
research has explored methods to improve land-use/land-
cover mapping performance based on remotely sensed
imagery (Moran et al., 1994; Brondizio et al., 1996; Foody
et al., 1996; Rignot et al., 1997; Lucas et al., 2000; Roberts et al.,
2002; Vieira et al., 2003; Salovaara et al., 2005; Lu et al.,
2011a). In particular, mapping and monitoring of primary
forest, cerrado/savanna, and secondary succession in the
Brazilian Amazon have attracted increasing attention due to
their important roles in carbon-related studies and environ-
mental assessment (Roberts et al., 2002; Ferreira and Huete,
2004; Brannstrom and Filippi, 2008; Sano et al., 2010).
Previous literature has summarized a large number of
techniques for mapping land-use/land-cover distribution and
monitoring its dynamic change based on remote-sensing data
(e.g., Singh, 1989; Tso and Mather, 2001; Coppin et al.,
2004; Lu et al., 2004; Lu and Weng, 2007). In particular, the
use of time-series Landsat images has attracted great interest
for developing land-use/land-cover data due to public access
with free (Masek et al., 2008; Vogelmann et al., 2009; Huang
et al., 2010; Thomas et al., 2011). However, the limitations
of remote-sensing data per se (spectral, spatial, and radio-
metric resolutions), atmospheric conditions, the complex
vegetation composition and stand structure, and the lack of
reference data that can be used for training samples during
image classification make it difficult to develop high-quality
time-series land-use/land-cover datasets (Lu and Weng,
2007). It necessitates developing a method to accurately map
land-use/land-cover distribution from historical remote-
sensing data without using training samples during the
classification procedure. Therefore, the objective of this
paper is to design a hierarchical-based classification method
to develop time series land-use/land-cover datasets from
Landsat images, and then to explore their dynamic change
between 1977 and 2008 in Lucas do Rio Verde, Mato Grosso
State, Brazil.

Study Area

The City of Lucas do Rio Verde (hereafter, Lucas) was
established in 1982 with a total area of approximately 3,663
km?. Tt has a relatively short history and small urban extent
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but has experienced rapid urbanization, especially in the
past decade. The region is connected to Santarém, a port
city on the Amazon River, and to the heart of Brazil’s
soybean-growing region at Cuiabd by means of the BR-163
highway, which runs through Lucas. The county is at the
epicenter of soybean production in Brazil, and its economic
base is large-scale agriculture, including the production of
soy, cotton, rice, and corn as well as poultry and swine. The
major vegetation types include primary forest (cerrado) and
limited areas of regenerating vegetation that appeared in
recent years. Deforestation began in the late 1970s with the
construction of BR-163 highway and expanded rapidly,
especially after the establishment of Lucas County, resulting
in a large area conversion from primary forest and cerrado to
agricultural lands. This study was able to examine the
process of land-use/land-cover transformation in Lucas from
the beginning, as the enhanced industrial infrastructure
went into place and the urban expansion began pushing
intensive agriculture outward into former agricultural fields
and natural vegetation.

Methods

The satellite images used in this research were the same
datasets as used in Lu et al. (2011b), except the 2007 T™
image, thus land-use/land-cover change was examined for
every six to seven years between 1977 and 1996 and for
every three years between 1996 and 2008. The datasets
included Landsat MSS images (08 - 09 July 1977), TM images
(21 June 1984, 09 August 1990, 06 June 1996, 17 September
2002, 17 July 2005, and 22 May 2008), and an ETM+ image
(10 August 1999). The 2004 and 2008 QuickBird images and
2009 land-use/land-cover survey data as well as Google
Earth™ images were used to support the selection of sample
plots for accuracy assessment. All Landsat images were
geometrically rectified into UTM projection with 30 m spatial
resolution. Since the image collection and preprocessing
were described in Lu et al. (2011b), these processes were not
repeated here.

Based on our research objectives, the characteristics of
the study area, and selected remote sensing data, we
designed a land-use/land-cover classification system consist-
ing of primary forest, cerrado, regenerating vegetation,
agropasture, water/wetland, and impervious surface area.
Cerrado is shrub-dominated vegetation or a mixture of shrub

and grassy vegetation. Regenerating vegetation consists of
woody- or shrub-dominated vegetation which was regener-
ated after deforestation, including plantations and regrowth
that appeared in recent years. Because agricultural lands and
pasture during the dry season have similar spectral features
on the Landsat images, they were merged as one class called
“agropasture.” Water and non-vegetation wetland were not
the research focus in this study, and thus they were merged
into one class (water/wetland). Impervious surface areas are
generally the man-made materials such as roads, building
roofs, and parking lots that water cannot penetrate.

Although many classification methods are available, as
summarized in Lu and Weng (2007), they require many
training samples for implementing image classification. For
historical remote sensing data, land-use/land-cover classifi-
cation is often difficult due to the lack of sufficient training
samples that can be used for image classification. Therefore,
we developed a hierarchical-based classification method
consisting of stratification and cluster analysis with ISODATA
(Jensen, 2005), as illustrated in Figure 1.

Previous research has indicated the difficulty in separat-
ing impervious surface area from other land-use/land-cover
types (e.g., bare soils, crop residues, and wetland) based on
Landsat multispectral images (Lu et al., 2011b). Thus, a
hybrid method consisting of thresholding, cluster analysis,
and manual editing was used to map impervious surface
area. This method was detailed in Lu et al. (2011b) and has
proven to be effective for extracting impervious surface
areas. Primary forest mapping was then conducted with the
combination of thresholding on normalized difference
vegetation index (NDVI) image and cluster analysis, as
described in another research in Rondonia for mapping
deforestation with MODIS and a limited number of T™ images
(Lu et al., 2011c). After masking impervious surface area
and forest classes from the Landsat multispectral bands, the
remaining land-use/land-cover classes included cerrado,
regenerating vegetation (e.g., plantation and other regener-
ated vegetation), agricultural land, pasture, water, and
wetland. The cluster analysis was then used to classify the
spectral signatures of remaining pixels into 50 clusters, and
the analyst merged the clusters into cerrado, regenerating
vegetation, agropasture, water/wetland, and mixed class
(confused land covers). The mixed class was eventually
classified through an iterative process of masking, cluster
analysis, and recoding; that is, (a) masking out all classified
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Figure 1. Hierarchical-based classification method for mapping land-use/land-cover distribution based on
Landsat imagery (Note: ISA and Reg.veg represent impervious surface area and regenerating vegetation).
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land-use/land-cover classes and remaining only the mixed
pixels, (b) using cluster analysis to classify spectral signa-
tures of the mixed pixels into 30 clusters, (c) merging each
cluster into one of the land-use/land-cover classes, and (d)
recoding the merged clusters into the same labels as the
land-use/land-cover classification system. During the
unsupervised classification, field survey data collected in
2009 and the 2008 QuickBird imagery were used to assist
the cluster-merging process. This hierarchical-based classifi-
cation method avoided the dilemma of the lack of training
samples for historical remote-sensing data and made full use
of analysts’ experiences and knowledge for accurately
mapping land-use/land-cover distribution.

In this research, the difficulty in land-use/land-cover
classification was the separation of cerrado and regenerating
vegetation, because cerrado ranges from grass-dominated to
shrub-dominated vegetation. Fortunately, regenerating
vegetation is very limited and mainly appeared after the
2002 Landsat images in this study area. Also, most regener-
ating vegetation was planted and few areas were regenerated
from previous cerrado fields after deforestation. After all
Landsat images were classified into thematic maps with the
hierarchical-based method, the analyst can further modify
the classified results to refine regenerating vegetation and
cerrado classes by using the established rules based on bi-
temporal classified images. For example, if a pixel was
classified as regenerating vegetation in the 2008 classified
image, but this pixel was classified as cerrado in the 2005
classified image, this pixel was corrected as cerrado in the
2008 classified image because of the misclassification
between cerrado and regenerating vegetation. On the other
hand, if a pixel was classified as cerrado in the 2008
classified image, but it was classified as agropasture in the
2005 classified image, this pixel was corrected to regenerat-
ing vegetation in the 2008 classified image because of the
misclassification between cerrado and pasture or crops.

After classification, accuracy assessment for recent dates
of the classified images was conducted with an error-matrix
method. Different accuracy assessment parameters, such as
overall classification accuracy, producer’s accuracy, user’s
accuracy, and overall kappa coefficient, were calculated
from the error matrix, as previous literature described (e.g.,
Congalton, 1991; Smits et al., 1999; Foody, 2002; Congalton
and Green, 2009). In this research, a total of 300 sample
plots were selected with a stratified random sampling
method with minimum number of 30 samples for the 2005
and 2008 classified images to independently develop an
error matrix. The land-use/land-cover type for each test
sample was identified from corresponding T™ color compos-
ite by visual interpretation, which was supported by the
2004 and 2008 QuickBird images, the 2009 field survey, and
Google Earth™ images. For the test samples in rural areas,
the land-use/land-cover types including primary forest,
cerrado, regenerating vegetation (mainly plantation) and
agropasture can be easily identified. In urban-rural frontiers,
QuickBird images and Google Earth™ images played an
important role in distinguishing impervious surface area,
agricultural lands, and wetland.

The total area for each land-use/land-cover class in the
study area was calculated separately from the classified
images between 1977 and 2008. Linear and nonlinear regres-
sion analyses were explored for the major land-use/land-cover
classes (i.e., forest, cerrado, agropasture, and impervious
surface area were used as dependent variable, respectively,
and the year was used as independent variable) to understand
the trends of land-use/land-cover dynamic change during the
past three decades. The coefficient of determination (R?) was
used to identify the best regression model for the selected
land-use/land-cover type. A scatterplot-based method was
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also used to examine the relationship between impervious
surface area and forest, cerrado and agropasture. The analysis
of total areas for major land-use/land-cover classes based on
the entire study area provides overall trends, but cannot
provide the detailed change trajectories and spatial patterns of
their dynamic changes. Therefore, a post-classification
comparison method was applied to detect land-use/land-cover
change trajectories (Jensen, 2005; Lu ef al., 2004). In this
research the most interesting change trajectories included the
conversion from vegetation (i.e., forest, cerrado, and regenerat-
ing vegetation) or agropasture to impervious surface area, and
the conversions from vegetation to agropasture and from
agropasture to regenerating vegetation. Other changes are
mainly caused by misclassification such as between cerrado
and water/wetland because of the influence of different water
levels during the change detection periods. Based on change
detection results, the annual impervious surface area increase
rate, annual agropasture change rates and annual deforesta-
tion rates of forest and cerrado were calculated, and the
percentages of conversion from different land-use/land-cover
classes to impervious surface area or agropasture were
analyzed to understand how urban expansion affected
deforestation and change of agricultural land in this region.
According to the land-use/land-cover detection results, four
stages were grouped for understanding which land-use/land-
cover change dominated in different periods.

Results and Discussion

Analysis of Time-series Land-use/Land-cover Datasets

The hierarchical-based classification method effectively
classified the Landsat images into six land-use/land-cover
classes, as shown in Plate 1. The classification results
showed that cerrado and forest accounted for the majority of
the study area in 1977, but they decreased rapidly in 1984
and 1990; in contrast, agropasture became to occupy the
majority after 1996. Since 2002, very limited forest areas
remained in the western part of the study area. Plate 1 also
indicates that there was no regenerating vegetation between
1977 and 1984, and very limited regenerating vegetation
between 1990 and 1996. Obvious regenerating vegetation
areas occurred in the western part of the county in 2002 and
more appeared in 2008. Meanwhile, impervious surface area
increased rapidly since 1990.

Accuracy assessment of the classification results from
the 2005 and 2008 Landsat T™ images indicated that an
overall classification accuracy of approximately 93 percent
for each classification result was obtained, as summarized in
Table 1. Cerrado had a relatively low accuracy compared to
other land-use/land-cover classes: a conclusion similar to
other research results (e.g., Brannstrom and Filippi, 2008).
This is because cerrado varies greatly in vegetation composi-
tion and vertical structure (dominant grass, shrub, or
woodland). It has unclear boundaries with primary forest
and is influenced by water, resulting in a high spectral
variation in spectral signatures which may be similar to
pasture, primary forest, regenerating vegetation, and
water/wetland. Another major misclassification resulted
from the similar spectral signatures between impervious
surface area and agriculture (e.g., bare soils and crop
residues). Although the accuracy assessments of other dates
of land-use/land-cover classification results were not
conducted, their accuracies were believed to be similar or
even better than 93 percent because cerrado was mainly
confused with regenerating vegetation, but there was no or
very limited regenerating vegetation before 2002. Also,
impervious surface area accounted for a very small propor-
tion before 2002 as shown in Plate 1. Although the 1977 mss
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Vegetation

Plate 1. Comparison of time-series land-use/land-cover classification results for six-year
intervals between 1977 and 2008 (therefore, the 1999 and 2005 classified images were
not provided here): (a) 1977, (b) 1984, (c) 1990, (d) 1996, (e) 2002, and (f) 2008.

image has only four spectral bands with a relatively coarse land-use/land-cover classes such as agricultural lands,
spatial resolution of 60 m compared to the T™M image with impervious surface area and water accounted for a small
six spectral bands and 30 m spatial resolution, the classifica- proportion of the study area in 1977.

tion accuracy was believed sufficiently high because forest The high classification accuracy for each date of the
and cerrado accounted for majority of the study area (the Landsat image with the hierarchical-based method is due to
area of forest and cerrado accounted for 93.2 percent of the the use of four key steps in the classification procedure:
total study area, according to the classified image), other (a) stratification of land-use/land-cover classes reduced the
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TABLE 1.

ERROR MATRICES OF LAND-USE/LAND-COVER CLASSIFICATION RESULTS BASED ON THE 2005 AND 2008 TM IMAGES

Classification results based on Landsat TM in 2005

Forest Cerrado Agrop Reg-veg Wat/wet ISA RT CT PA UA
Forest 49 3 0 0 0 0 52 55 89.1 94.2
Cerrado 5 34 0 0 2 0 41 42 80.9 82.9
Agrop 1 1 112 1 0 0 115 116 96.5 974
Reg-veg 0 2 0 29 0 0 31 30 96.7 93.5
Wat/wet 0 1 0 0 29 0 30 31 93.5 96.7
ISA 0 1 4 0 0 26 31 26 100.0 83.9

OCA = 93.0%; OKC = 0.91

Classification results based on Landsat TM in 2008

Forest Cerrado Agrop Reg-veg Wat/wet ISA RT CT PA UA
Forest 51 0 0 0 0 0 51 54 94.4 100.0
Cerrado 3 36 0 0 2 0 41 45 80.0 87.8
Agrop 0 3 107 1 0 2 113 109 98.2 94.7
Reg-veg 0 6 0 26 0 0 32 27 96.3 81.2
Wat/wet 0 0 0 0 30 0 30 32 93.7 100.0
ISA 0 0 2 0 0 31 33 33 93.9 93.9

OCA = 93.7%; OKC = 0.92

Note: Agrop, Reg-veg, Wat/wet, and ISA represent agropasture, regenerating vegetation, water/wetland, and impervious surface area,
respectively. RT, CT, PA, and UA represent row total, column total, producer’s accuracy, and user’s accuracy, respectively. OCA and OKC

represent overall classification accuracy and overall kappa coefficient.

spectral confusion among different land-use/land-cover
classes, (b) the analyst’s knowledge and experience from
field survey and QuickBird as well as Google Earth™ images
were employed in merging the clusters into meaningful
land-use/land-cover classes, (c) manual editing in each step
further removed the misclassified classes that could not be
automatically separated from the spectral signatures, and (d)
post-processing based on the bi-temporal classified images
further corrected misclassification between cerrado, regener-
ating vegetation, and agropasture. One advantage of this
method is that it does not require training samples during
image classification, which is critical for land-use/land-cover
classification based on historical remote-sensing data.
Generally, supervised classification methods rely heavily on
the use of many representative training samples, which are
often unavailable for historical image classification. On the
other hand, unsupervised classification methods are often
difficult in merging clusters into meaningful land-use/land-
cover classes. The hierarchical-based classification method
used in this paper not only overcomes the shortcoming of
both supervised and unsupervised classification methods,
but also includes the expert knowledge during the classifica-
tion procedure; thus, this method can improve classification
performance. The disadvantage is the requirement of human
involvement, because the analyst’s experience and knowl-
edge or familiarity with the study area might affect the
classification results.

The high accuracies of these land-use/land-cover
classification results provided a reliable data source for
further conducting land-use/land-cover change analysis. The
land-use/land-cover changes over time for the entire study
area, as well as the best regression models corresponding to
the selected land-use/land-cover types are illustrated in
Figure 2. The exploration of linear and nonlinear regression
analyses indicated that forest area was linearly reduced from
1476.5 km? in 1977 to 652.1 km? in 2008, and cerrado areas
were nonlinearly reduced from 1936.2 km? in 1977 to only
335.7 km? in 2008. Meantime, impervious surface area and
agropasture were nonlinearly increased from only 7.1 km?

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

and 236.3 km? in 1977 to 99.7 km? and 2480.6 km?, respec-
tively, in 2008. According to the regression models, remain-
ing cerrado and primary forest areas that can be converted to
agropasture may be depleted by 2013 and 2015, respectively,
assuming the current deforestation rates continue but do not
affect the preserved vegetation along waterways. Figure 2
also shows the decrease of agropasture from 2005 to 2008
due to the decreased deforestation rates of forest and cerrado
and the increased urbanization rate during the same period.
According to this trend, agropasture will continue to
decrease as the City of Lucas continues to grow and expands
into nearby agropasture lands in the near future.

The relationships of impervious surface area with forest,
cerrado and agropasture areas during the periods of 1977 to
2008 may be better understood in a scatterplot, as shown in
Figure 3. When impervious surface area was less than
approximately 40 km? before 1999, impervious surface area
had a positively linear relationship with agropasture area,
and negatively linear relationships with forest and cerrado
areas. After impervious surface area reached about 40 km? in
1999, no obvious relationships existed between impervious
surface area and forest, cerrado and agropasture between
1999 and 2008. This implies that at the initial stage of
population migration from other areas to Lucas, the increase
of impervious surface area (e.g., roads, buildings) resulted in
rapid conversion from primary forest and cerrado to agricul-
tural lands. At the second stage, although impervious
surface area continuously increased, its increased area was
mainly due to the urban expansion at the expense of
agriculture land. In particular, the increase of impervious
surface area after 2005 has resulted in a slight decrease of
agropasture area in 2008 due to the constraint of cerrado
and forest areas.

Analysis of Land-use/Land-cover Change Trajectories and Rates

The above analysis of time-series land-use/land-cover
datasets provided overall trends of dynamic change but did
not show change trajectories. The major annual land-use/
land-cover changes and detailed percentages of their changes
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from different land-use/land-cover classes to impervious
surface area or agropasture are illustrated in Figure 4. The
annual cerrado deforestation rate and annual agropasture
growth rate reached the peaks during the period of 1984 to
1990, just after the establishment of the Lucas County. The
cerrado deforestation rate was reduced from over 141
km?/year during the period of 1984 to 1990 to approximate
8 km?/year during the period of 2005 to 2008. The forest
deforestation rate remained relatively constant, around 15 to
25 km?/year in 1984 through 2005, and decreased to less
than 4 km?/year in 2005 to 2008. The highest agropasture
expansion rate reached 157 km?/year in 1984 to 1990, and
then dropped significantly to less than 13 km?*/year in 2005
to 2008. The annual impervious surface area growth rate
increased from only 2 to 3 km?/year in 1977 to 1996 to over
13 km?/year in 2005 to 2008. Initially, the increased imper-
vious surface area was mainly at the expense of cerrado,
accounting for 73percent in 1977 to 1984, but dropped to
about 2 percent in 2005 to 2008. After 2002, the conversion
from agropasture to regenerating vegetation became obvious.
The detailed land-use/land-cover change trajectory images
are illustrated in Plate 2. It indicated that the majority of the
changed areas were from the conversion of vegetation (i.e.,
cerrado and forest) to agropasture during the first two
decades (e.g., from 1977 to 1996), while the increase of road
density and urban expansion were particularly noticeable
during the last decade (from 1999 to 2008).

Implication of Urbanization, Deforestation, and Change of Agricultural Land
Based on the above analysis of major land-use/land-cover
changes (see Figure 4), four development stages can be
grouped for Lucas County:

1. The first stage between 1977 and 1984 represented the initial
migration resulting in relatively high deforestation of cerrado

and high agropasture expansion. Annual cerrado deforesta-
tion rate was approximately 75 km?/year, annual agropasture
expansion was less than 80 km?/year, and annual increased
impervious surface area was less than 2.4 km?/year. At this
stage, 92 percent of the increased agropasture area, and 73
percent of the increased impervious surface area were from
cerrado deforestation.

2. The second stage between 1984 and 1999 represented high
deforestation of cerrado, highly mechanized agricultural
expansion, and a gradually increasing urbanization rate.
Annual cerrado deforestation was 72 to 141 km?*/year,
annual forest loss was 15 to 20 km?/year, annual agropasture
expansion was 75 to 157 km?/year, and annual increased
impervious surface area was only 2 to 4 km?/year. During
this stage, 75 percent to 90 percent of the increased agropas-
ture area was from cerrado loss and 10 percent to 20 percent
of which from forest loss. Meantime, 50 percent to 83 percent
of the increased impervious surface area was converted from
agropasture.

3. The third stage between 1999 and 2005 represented lower
deforestation rates, slower agropasture expansion rates, and a
relatively higher urbanization rate than previous stages.
Deforestation was considerably lower and evenly from both
cerrado and forest at 15 to 25 km?/year. Annual agropasture
expansion was 30 to 57 km?/year and annual increased
impervious surface area was 6 to 8 km?*/year. Of the
increased agropasture area, 36 percent to 48 percent was
from cerrado and 45 percent to 50 percent from forest, while
91 percent to 94 percent of the increased impervious surface
area was converted from agropasture.

4. The fourth stage between 2005 and 2008 represented very
low deforestation and agropasture expansion rates but a
considerably high urbanization rate. Both forest and cerrado
had very limited deforestation rates with less than 9 and 4
km?/year, respectively. Annual agropasture expansion
dropped to less than 13 km?/year, and annual increased
impervious surface area was over 13 km?*/year. Of the
increased agropasture area, 63 percent was from cerrado loss
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(a) 1977 to 1984, (b) 1984 to 1990, (c) 1990 to 1996, (d) 1996 to 1999, (e) 1999 to 2002, (f) 2002

:] Vegetation to Impervious Surface
- Agropasture to Impervious Surface
I:I Vegetation to Agropasture

- A to { g
- Other changes

E No change

(9)

and 27 percent from forest loss. At this stage, over 96
percent of the increased impervious surface area was
converted from agropasture.

Before 1980, deforestation in this area was very limited
due to the constraints of roads and labor supply. Only one
road (i.e., BR-163) ran through the county. When Lucas
County was established in 1982, deforestation, especially of
cerrado, increased because the major road ran through the
cerrado landscape. However, the pioneer farmers claimed
land beyond the edges of the highway and rapidly converted
a large area of cerrado to agropasture. As cerrado continu-
ously decreased and deforestation spread toward the limits
of the county, deforestation of cerrado and forest occurred
evenly between 1999 and 2005. After 2000, deforestation
and agricultural expansion rates slowed due to the reduced
supply of natural vegetation that could be converted.
Meanwhile, urbanization rates increased faster, largely
converting agricultural lands, accounting for over 91 per-
cent. For example, between 1999 and 2005, impervious
surface area increased by 42.2 km?, and about 93 percent of
area was converted from agricultural lands. Between 2005
and 2008, impervious surface area increased by 41 km?, and
over 96 percent of area was converted from agricultural
lands. By 2005, the increased impervious surface area was
slightly larger than increased agropasture. This may produce
a new set of problems, such as housing for the rapidly
growing population, transportation, urban and rural water
pollution, planning and management of land resources, and
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environmental issues. Therefore, better understanding of
land-use/cover changes and their interactions with human
activities is valuable for making better decisions about the
use of land resources.

Conclusions

Evaluation of land-use/land-cover classification results
indicates that the proposed hierarchical-based classification
method can be successfully used to develop time-series land-
use/land-cover datasets from Landsat images. Overall, primary
forest decreased linearly and cerrado nonlinearly, and agropas-
ture and impervious surface area increased nonlinearly
between 1977 and 2008 in Lucas County. At the initial stage,
when impervious surface area was less than approximately 40
km? in this study area, impervious surface area was negatively
related to cerrado and forest areas, and positively related to
agropasture area. However, after impervious surface area
reached a certain value (i.e., 40 km? in this study area in
1999), impervious surface area was not related to forest or
cerrado areas; it was mainly converted from the loss of
agropasture, especially in the past decade. The time-series
land-use/land-cover datasets from 1977 to 2008 and the
change detection results were valuable for better planning and
managing the land resources, and may be useful for examining
the impacts of population migration and changing economic
conditions on land-use/land-cover change and for assessing
shifts in environmental conditions due to this change.
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