This article was downloaded by: [Michigan State University], [Dengsheng Lu] On: 28 May 2013, At: 05:04 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Remote Sensing

Publication details, including instructions for authors and subscription information: <http://www.tandfonline.com/loi/tres20>

Spatiotemporal analysis of land-use and land-cover change in the Brazilian Amazon

Dengsheng Lu^a, Guiying Li^b, Emilio Moran^a & Scott Hetrick^b ^a Center for Global Change and Earth Observations, Michigan State University , East Lansing , MI , 48823 , USA

b Anthropological Center for Training and Research on Global Environmental Change, Indiana University , Bloomington , IN , 47405 , USA

Published online: 28 May 2013.

To cite this article: Dengsheng Lu , Guiying Li , Emilio Moran & Scott Hetrick (2013): Spatiotemporal analysis of land-use and land-cover change in the Brazilian Amazon, International Journal of Remote Sensing, 34:16, 5953-5978

To link to this article: <http://dx.doi.org/10.1080/01431161.2013.802825>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: [http://www.tandfonline.com/page/terms-and](http://www.tandfonline.com/page/terms-and-conditions)[conditions](http://www.tandfonline.com/page/terms-and-conditions)

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Spatiotemporal analysis of land-use and land-cover change in the Brazilian Amazon

Dengsheng Lu^{a*}, Guiying Li^b, Emilio Moran^a, and Scott Hetrick^b

aCenter for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA; bAnthropological Center for Training and Research on Global Environmental Change, Indiana University, Bloomington, IN 47405, USA

(*Received 8 October 2012; accepted 15 April 2013*)

This paper provides a comparative analysis of land-use and land-cover (LULC) changes among three study areas with different biophysical environments in the Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired during the years of 1990*/*1991, 1999*/*2000, and 2008*/*2010 were used to examine LULC change trajectories with the post-classification comparison approach. A classification system composed of six classes – forest, savanna, other vegetation (secondary succession and plantations), agro-pasture, impervious surface, and water – was designed for this study. A hierarchical-based classification method was used to classify Landsat images into thematic maps. This research shows different spatiotemporal change patterns, composition, and rates among the three study areas and indicates the importance of analysing LULC change at multiple scales. The LULC change analysis over time for entire study areas provides an overall picture of change trends, but detailed change trajectories and their spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon scale provides the information of the changes in patch sizes over time, while the LULC change at census sector scale gives new insights on how human-induced activities (e.g. urban expansion, roads, and land-use history) affect LULC change patterns and rates. This research indicates the necessity to implement change detection at multiple scales for better understanding the mechanisms of LULC change patterns and rates.

1. Introduction

Deforestation has been regarded as one of the most important factors affecting climate change, biodiversity, and other environmental conditions (Skole et al. 1994; Hirsch et al. 2004; Fearnside 2005). Monitoring of forest and savanna deforestation in the Brazilian Amazon has received much attention in the past three decades. Two systems (i.e. PRODES – Programme for the Estimation of Deforestation in the Brazilian Amazon ([http://](http://www.obt.inpe.br/prodes/) [www.obt.inpe.br/prodes/\)](http://www.obt.inpe.br/prodes/) and DETER – Real Time Deforestation Monitoring System [\(http://www.obt.inpe.br/deter/\)\)](http://www.obt.inpe.br/deter/) have been developed to monitor annual deforestation using Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data, respectively. According to a National Institute for Space Research (INPE) report, a total area of 392,020 km2 of forest was deforested in the Brazilian Amazon between 1988 and 2011 [\(http://www.mongabay.com/brazil.html\).](http://www.mongabay.com/brazil.html) A large area of primary forest and savanna has

^{*}Corresponding author. Email: ludengsh@msu.edu

^{© 2013} Taylor & Francis

been converted into secondary succession, agroforestry, pasture, agricultural fields, and infrastructure (Lucas et al. 2000; Roberts et al. 2002; Cardille and Foley 2003; Carreiras et al. 2006; Lu, Hetrick, et al. 2012). In addition to the monitoring of primary forest, timely detection of other land-use and land-cover (LULC) change, especially secondary succession and agriculture expansion, is also important for better management and planning of the deforested areas (Lu, Hetrick, et al. 2012).

Research on LULC change detection has attracted much attention in the past three decades (e.g. Singh 1989; Coppin et al. 2004; Lu, Mausel, Brondizio, 2004; Kennedy et al. 2009; Chen et al. 2012). Multitemporal remotely sensed data, especially time series Landsat images, have been widely used for examining LULC change (Masek et al. 2008; Vogelmann, Tolk, and Zhu 2009; Huang et al. 2010; Thomas et al. 2011; Hansen and Loveland 2012). Although many change detection techniques have been developed, most are only used to detect binary change and nonchange categories (Lu, Mausel, Brondizio, et al. 2004). In practice, detailed 'from–to' change trajectories are often required for better understanding of LULC change patterns and rates. Post-classification comparison is the most common method used to examine LULC change trajectories. Traditionally, LULC change detection is implemented at the per-pixel level, but analysis of LULC change at multiple scales may provide new insights on change patterns and rates. Therefore, this paper aims to analyse LULC change at different scales: per-pixel, polygon, census sector, and total study area using multitemporal Landsat images acquired during the years of 1990*/*1991, 1999*/*2000, and 2008*/*2010 within three study areas having different biophysical conditions in the Brazilian Amazon.

2. Methods

Altamira and Santarém in Pará State and Lucas do Rio Verde (hereafter, Lucas) in Mato Grosso State were selected for this research (Figure 1). The three study areas have different biophysical and socioeconomic conditions, as summarized in Table 1. This research employs multitemporal Landsat images to examine LULC change. Figure 2 provides a flow chart of this research, which includes image preprocessing, image classification using the hierarchical-based method, and change detection analysis at different scales.

2.1. Data collection and preprocessing

The Landsat images used in this research are summarized in Table 2. All Landsat images with spatial resolution of 30 m were atmospherically calibrated with the improved imagebased dark object subtraction method (Chavez 1996; Chander, Markham, and Helder 2009). The Landsat Thematic Mapper (TM) images that were downloaded from US Geological Survey (USGS; [http://glovis.usgs.gov/\)](http://glovis.usgs.gov/) had previously been georeferenced into the Universal Transverse Mercator (UTM) coordinate system, and their geometric accuracy met our research requirement, but the TM images obtained from Brazilian INPE had geometric errors that required implementing image-to-image registration based on the georeferenced images. Root mean square errors of less than 0.5 pixels were obtained.

In the moist tropical regions of the Brazilian Amazon, cloud cover is often a problem prohibiting the collection of cloud-free Landsat images (Asner 2001). In the Altamira and Santarém study areas, completely cloud-free Landsat images are not always available; thus, we used multiple Landsat images to remove the cloud*/*shadow problem, assuming that the clouds are located at different areas at various image acquisition dates. For example, in Altamira, we used the 2000 Landsat Enhanced Thematic Mapper Plus (ETM+) image as a reference image because of its relatively good quality for the majority of the study area.

Figure 1. Three study regions – Altamira and Santarém in Pará State and Lucas do Rio Verde in Mato Grosso State. Background images are red-band images from the Landsat 5 scenes acquired in July 2010 for Altamira and Santarém and in July 2008 for Lucas do Rio Verde. The dashed rectangles delineate the study areas in Altamira and Santarém and the dashed polygon delineates the boundary of Lucas County. The white circle and black dot indicate the major urban location for each of the study areas.

The cloud*/*shadow areas in this image were replaced with the 1999 Landsat TM image (see Figure 3). Because some clouds*/*shadows were still on both the 2000 ETM+ and 1999 TM images, the 2003 TM image was used to replace the clouds*/*shadows because no other cloud-free Landsat images were available in the years close to 2000. Before implementing the replacement of clouds*/*shadows in a reference image, image-to-image normalization between the reference image and subject images was conducted by a regression-based method using pseudo-invariant objects, such as road intersections and water, which were selected from the multiple Landsat images (Heo and FitzHugh 2000; Yang and Lo 2000; Du, Teillet, and Cihlar 2002). The reflectance values from the 2000 ETM+ images were used as a dependent variable, and a regression model for each band was developed to calibrate the 1999 TM and the 2003 TM images. The same method was used in Santarém for replacement of clouds*/*shadows in the reference image. Because of the confusion of the spectral signatures among clouds, urban landscape, and agricultural lands, and between shadows and water bodies, automatically detecting clouds*/*shadows, especially the relatively light clouds*/*shadow, is often difficult. Therefore, the clouds*/*shadows were visually interpreted on the colour composites by assigning near infrared, shortwave infrared,

Table 1. Major characteristies of the three study areas in the Brazilian Anazon.

Shop characteristies of the three study areas in the Brazilian Anazon.

Located in the mothern Patis Sans. Located at the complete of the C

Land-use history

Liana forest Liana forest

Deforestation since the early 1970s consisting of different succession consisting of different succession Land-use history **Deforestation** since the early 1970s stages, pasture, agroforestry, and stages, pasture, agroforestry, and production, including cocoa and production, including cocoa and agricultural lands. Because this has led to a complex landscape agricultural lands. Because this has led to a complex landscape soils, the area has a strong and region has better than average soils, the area has a strong and region has better than average stable basis for agro-pastoral stable basis for agro-pastoral sugar cane sugar cane

1970s with the construction of the 1970s with the construction of the establishment of Lucas County in establishment of Lucas County in and savanna to agricultural lands and savanna to agricultural lands BR-163 highway and expanded BR-163 highway and expanded conversion from primary forest conversion from primary forest 1982, resulting in a large area 1982, resulting in a large area Deforestation began in the late Tropical savanna (cerrado) and Deforestation began in the late rapidly, especially after the rapidly, especially after the Amazon forest Amazon forest areas of tropical savanna thought areas of tropical savanna thought settlement. The major roads and differing historical processes of settlement. The major roads and differing historical processes of Amazon tropical moist forest and small-lot property aggregation small-lot property aggregation into large industrial farms for Santarém are associated with into large industrial farms for the landscape to the south of Santarém are associated with the landscape to the south of settlements. Recent trend of settlements. Recent trend of extending out of the city of extending out of the city of Santarém have a complex Santarém have a complex indigenous communities. indigenous communities. inhabited early by Tapajós Different road networks Inhabited early by Tapajós structure of agricultural Different road networks structure of agricultural export commodities export commodities to be edaphic to be edaphic

Figure 2. Flow chart of the research.

and red wavelength band images as red, green, and blue, respectively. The identified pixels having clouds*/*shadows in the reference image were then replaced with the spectral values of the same location from other spectrally normalized Landsat images.

Field surveys were conducted in Altamira in July–August 2009, in Santarém in 2010 and 1999, and in Lucas in 2009. The field surveys mainly collected sample plots in rural areas and documented different stages of secondary forest, pasture, and crop fields, as described in Li et al. (2011). QuickBird images for the three study areas were used to collect sample plots in urban and urban–rural frontiers. The reference data collected from field surveys and QuickBird images had two roles in this research, one being to support the identification of thresholds used in the hierarchicalbased classification method and the other to be used as sample plots for accuracy assessment.

According to our project requirement and this research purpose, a classification system with six LULC classes – primary forest, savanna, other vegetation (e.g. secondary succession, plantations), agro-pasture (agricultural fields, pasture), impervious surface, and water – was designed for this study. In cases where clouds*/*shadows could not be completely removed from the multiple Landsat images, another class called cloud*/*shadow was included in preliminary classification results, but this class was removed from the final result through a post-processing procedure to accurately examine the LULC change patterns and rates in these study areas.

Data sets	Altamira	Santarém	Lucas			
Landsat images	Landsat 5 TM image on 20 July 1991 with EarthSat-Orthorectified image.	Landsat 5 TM (L1G) on 11 July 1991, but clouds/shadows were replaced with a TM image $(L1G)$ on 25 June 1991	Landsat 5 TM image (from INPE) on 9 August 1990			
	Landsat $7 ETM + images$ $(L1G)$ on 4 July 2000, but clouds/shadows were replaced with two TM images on 19 August 1999 (L1G) and 22 August 2003 (L1G)	Landsat 5 TM (L1G) on 2 August 1999, but clouds/shadows were replaced with an $ETM+ image (L1G)$ on 10 August 1999	Landsat $7 ETM+$ image $(L1G)$ on 10 August 1999			
	Landsat 5 TM image (from INPE) on 2 July 2008	Landsat 5 TM image (from INPE) on 29 June 2010, but clouds/shadows were replaced with a TM image $(L1G)$ on 12 July 2009	Landsat 5 TM image (from INPE) on 22 May 2008			
QuickBird image	26 September 2008	25 June 2008	20 June 2008			
Fieldwork	2009	1999 and 2010	2009			
Census data	The 2010 Brazilian census sector data were used					

Table 2. Landsat images and other data sources used in research.

Notes: TM represents Landsat Thematic Mapper sensor, and ETM+ represents Landsat Enhanced Thematic Mapper Plus sensor. The Landsat images from USGS are L1G products with good geometric accuracy, but the images from INPE have geometric errors that require conducting image-to-image registration using L1G products as reference images.

2.2. Development of LULC datasets and accuracy assessment

2.2.1. LULC classification with the hierarchical-based method

Many classification algorithms are available (Lu and Weng 2007; Tso and Mather 2009); however, developing an accurate classification result from remotely-sensed data is still a challenge. Many factors, such as spatial and spectral resolution of the satellite imagery, available reference data, classification algorithm, and the analyst's experience, may affect the classification (Lu and Weng 2007). The sufficient number of representative training samples is especially important for the supervised classification algorithms. Many previous studies have documented the difficulty in LULC classification in the Brazilian Amazon due to the spectral confusion between different LULC types, such as among impervious surfaces, bare soils and non-vegetation wetland, and the complex vegetation types and structures (Lu, Mausel, Batistella, et al. 2004; Lu, Batistella, et al. 2012). In our previous research in the Brazilian Amazon basin, we have extensively examined LULC classification using different sensor data (e.g. Landsat, ASTER, SPOT, and radar) and different classification algorithms (e.g. maximum likelihood, neural network, decision tree, support vector machine, K-nearest neighbour) (Li et al. 2011; Li, Lu, Moran, Dutra, et al. 2012; Li, Lu, Moran, and Sant'Anna 2012; Lu, Batistella, et al. 2012). We found that the hierarchicalbased classification method is valuable for LULC classification, especially when training

Figure 3. A comparison of multiple Landsat images (near infrared, shortwave infrared, and redband images were assigned as red, green, and blue, respectively, in this colour composite) in Altamira showing the cloud*/*shadow problem (note: the 2000 ETM+ scene image covers the entire study area, but both the 1999 and 2003 TM scene images lack a small section of data).

sample data are not available for historical remote-sensing data (Lu, Hetrick, et al. 2012). The hierarchical-based method used four steps in the classification procedure: (1) stratification of LULC classes to reduce the spectral confusion among different classes, (2) use of the analyst's knowledge and experience to merge the clusters into meaningful LULC classes, (3) manually editing the classification results in each step to further refine the misclassified classes, and (4) post-processing based on the multitemporal classified images to further correct misclassification. A detailed description of the hierarchical-based classification method is provided in Lu, Hetrick, et al. (2012). Therefore, this method is used in this research for LULC classification for the three study areas.

2.2.2. Refinement of LULC classification results

Even though the majority of clouds*/*shadows were removed from the reference image, some dispersed clouds*/*shadows still remained because some clouds were in the same location in differently dated images (Figure 3). It is important to further remove clouds*/*shadows in the classified images because of the requirement of accurately analysing the LULC dynamic changes. A comparison of the multitemporal classification images and Landsat colour composites among 1991, 2000, and 2008 in Altamira indicated that many clouds*/*shadows were located in forest areas. We employed three successive steps to replace the cloud*/*shadow pixels with the specific LULC types in the classification images.

(1) Automatic replacement: if the pixels were classified as clouds*/*shadows in the prior-date classification image but were classified as forest in the posterior-date classification image, these pixels in the prior-date classification image were reassigned as forest.

- (2) Visual editing: the classified image was overlaid on a corresponding Landsat colour composite, highlighting the pixels of clouds*/*shadows and assigning these pixels to a proper LULC class by visual interpretation of the colour composite.
- (3) Majority filtering: some single pixels of clouds*/*shadows in the classification images were removed using the majority filtering function (i.e. the pixel of the clouds*/*shadows was used as a centre and a majority filter with a window size of 5 by 5 pixels was used to re-assign a LULC class to the centre pixel).

In addition to the rules that were used for removal of clouds*/*shadows, other rules were used to correct the misclassification between primary forest and other vegetation (mainly advanced succession) classes and between impervious surface and agro-pasture.

- (1) If the pixels in the prior-date classification image were forest, but were difficult to determine as either primary forest or advanced succession in the posterior-date classification image, re-assign these pixels to forest in the posterior-date classification image.
- (2) If the pixels in the prior-date classification image were other vegetation class, but were difficult to determine as either other vegetation or primary forest in the posterior-date image, re-assign these pixels to other vegetation in the posterior-date classification image.
- (3) If the pixels in the prior-date classification image were impervious surface, but were difficult to determine as either agro-pasture or impervious surfaces in the posterior-date classification image, re-assign these pixels to impervious surfaces.

In order to implement accurate analysis of agro-pasture dynamic change in rural areas, it is necessary to distinguish agro-pasture in rural area from grass in urban landscape because the similar spectral features between grass in urban landscapes and pasture in rural landscapes during the dry season often results in misclassification. However, pasture is mainly distributed in rural landscapes; so, we were able to visually define the boundary of urban landscapes and re-assign the classified agro-pasture in urban landscape as grass. After all the above-mentioned post-processing procedures were conducted on the classification images, accuracy assessments were implemented for the three study areas.

2.2.3. Evaluation of LULC classification results

Accuracy assessment is often required to better understand the quality and reliability of a classification image. In general, overall classification accuracy and kappa coefficient are often used to assess the overall performance in a classification, while producer's accuracy and user's accuracy are used to evaluate the performance of each LULC class. These parameters are calculated from the error matrix, as described in previous literature (e.g. Foody 2002; Congalton and Green 2008). In this study, a total of 413 sample plots were collected from the 2009 fieldwork and the 2008 QuickBird image in Altamira, and they were used to evaluate the 2008 classification image. In Santarém, 546 sample plots were collected from the 2010 fieldwork and the 2008 QuickBird image and were used for evaluating the 2010 classification image. Another 265 sample plots were collected in the 1999 fieldwork and were used to evaluate the 1999 classification image. In Lucas, a total of 300 sample plots were collected from the 2008 QuickBird images and the 2009 field survey and were used to evaluate the 2008 classification image. The QuickBird images mainly covered the urban landscapes, and therefore these images were primarily used to collect samples in the urban landscape, while field surveys were conducted in the deforested regions in rural areas. A detailed description of field data collection is provided in Li et al. (2011). Because reference data were not available for other dates of classification images, no accuracy assessments were conducted for these results, but we were confident that these results had similar classification accuracy based on our previous work using the hierarchical-based classification method (Lu, Hetrick, et al. 2012).

2.3. Analysis of LULC dynamic changes at multiple scales

In general, change detection is implemented at per-pixel level based on the classified images. However, change detection analysis can also be conducted at other scales such as polygon, census sector, and overall scales, which are the foci of this research.

2.3.1. Analysis of LULC change at overall scale

The total area for each LULC class in each study area was calculated from the perpixel-based classification image. The proportion of each LULC type in a study area was calculated as:

$$
A_i
$$
% of LULC type $i =$ (area of the LULC type i /total study area) × 100. (1)

Meanwhile, the change for each LULC type in a study area was calculated:

$$
A_i = A_{it1} - A_{it2},
$$
 (2)

where A_{it1} and A_{it2} represent a total area of the LULC type *i* at date *t*1 and date *t*2, respectively. The change analysis at overall scale provided the overall gain or loss for specific LULC types, but cannot provide the detailed LULC trajectories.

2.3.2. Analysis of LULC change at per-pixel scale

The post-classification comparison approach was used to examine the detailed LULC change trajectories at per-pixel scale. The major change trajectories in this research included the following.

- (1) Deforestation of primary forest: the conversion from primary forest to other vegetation, or to agro-pasture, or to impervious surfaces.
- (2) Deforestation of savanna: the conversion from savanna to other vegetation, or to agro-pasture, or to impervious surfaces.
- (3) Deforestation of other vegetation: the conversion from other vegetation to agropasture or to impervious surfaces.
- (4) Loss of agro-pasture lands: the conversion from agro-pasture to other vegetation or to impervious surfaces.
- (5) Other changes: water change and the changes due to the errors of image-to-image registration. These changes were not the foci of this research.

From the above-mentioned major LULC change trajectories, we can further examine: (1) dynamic change of other vegetation class (gain due to the deforestation of primary forest and savanna, and loss from the conversion from other vegetation to agro-pasture and to impervious surfaces); (2) dynamic change of agro-pasture (gain due to the conversion from primary forest, savanna, and other vegetation to agro-pasture, and loss due to the conversion from agro-pasture to other vegetation or impervious surfaces); and (3) expansion of impervious surface areas (e.g. gain due to conversion from primary forest, other vegetation, savanna, and agro-pasture to impervious surfaces).

The change and no change areas were calculated from each change detection result, and the percentage of total changed area was calculated as (total changed area*/*total study area) \times 100; the annual percentage of changed area was calculated as percentage of total changed area*/*number of years during the change detection period. Meanwhile, the area and percentage of each change trajectory were calculated from the change detection images for analysing the change detection trends among the three study areas.

2.3.3. Analysis of LULC change at census sector scale

Census sectors, as defined by the Instituto Brasileiro de Geografia e Estatística (IBGE), are the minimum areal units created for the purpose of cadastral control of data collection. Many important variables related to population and economic conditions are organized at the census sector scale and are accessible for public use. These variables are critical for examining forces driving LULC change; thus, it is important to examine the LULC dynamic change at the sector scale, but this has not been examined in previous research. Here, we examined the LULC change at the sector scale as defined by the 2010 Brazilian census. Emphasis was placed on the LULC change in rural landscapes for examining deforestation, regeneration, and agriculture dynamic change. A pie graph was used to illustrate the proportions of each changed LULC type based on the percentage of changed area at each census sector. Since some census sectors partially located outside of the classification image, only the census sectors within the study area were analysed.

2.3.4. Analysis of LULC change at polygon scale

The classification system used in this research includes six LULC classes – primary forest, savanna, other vegetation, agro-pasture, impervious surface, and water. There is no savanna in Altamira and very limited savanna areas in Santarém, but savanna in Lucas accounted for a large proportion of land cover in the 1980s and 1990s. Impervious surface area and water account for a very small proportion in the three study areas, and they are not the foci of this research. Therefore, the emphasis of LULC change at the polygon scale in this research was on the dynamic change of forest, agro-pasture, and other vegetation classes for Altamira and Santarém and of forest, savanna and agro-pasture for Lucas. The classified images in raster format were converted into vector format shapefile polygons. Polygons of area less than 2 ha were merged to the nearest polygon by considering the minimum analysis size of these LULC types and the reduction of noise caused by the per-pixel-based classification method. The areas of all polygons for each identified class were then calculated, and the corresponding number of polygons with each polygon area range of less than 5 ha (5–10), (10–30), (30–50), (50–100), (100–200), (200–500), and greater than 500 ha, was calculated (note: (5–10) means area ranges of greater than or equal to 5 ha but less than 10 ha). The scale-bar graph for each polygon area range for these LULC types was used to examine the dynamic change of patch sizes at different dates and study areas for understanding the patterns of these LULC dynamic changes.

3. Results

3.1. Evaluation of LULC classification results

The classification accuracy assessment results for the three study areas indicated that the hierarchical-based classification method effectively classified Landsat images into six-class thematic maps (see Table 3), providing the fundamental data sources for examining LULC

Table 3. Accuracy assessment results for the three study areas.

Notes: LULC types – F, S, V, A, I, and W represent forest, savanna, other vegetation (i.e. secondary succession vegetation and plantations), agro-pasture (i.e. agricultural and pasture lands), impervious surface areas, and water, respectively. RT, CT, PA, and UA represent row total, column total, producer's accuracy, and user's accuracy, respectively.

change trajectories. Santarém and Lucas have higher overall classification accuracy (i.e. 91.7–93.7%) than Altamira (i.e. 84%). The major problem causing relatively low accuracy in Altamira was the misclassification between advanced succession vegetation and primary forest due to their complex vegetation stand structure and species composition and between initial succession (other vegetation) and dirty pasture (agro-pasture) due to the lack of a clear boundary between them. A similar situation was present in Santarém, but less so due to lower fertility conditions. For Lucas, some savanna (cerrado) was confused with other vegetation or agro-pasture due to the wide variation of savanna in species composition and density (Lu, Hetrick, et al. 2012). Although no accuracy assessment for other dates of classified images in the three study areas was implemented due to the lack of reference data, their classification results were believed to have similar accuracies, as our previous research had proved that the hierarchical-based classification method was reliable and stable (Lu, Hetrick, et al. 2012).

3.2. Analysis of LULC change at different scales

3.2.1. Analysis of LULC change at overall scale

A comparative analysis of the total area for each LULC class among the three study areas indicated that the composition of LULC classes varied considerably at different dates, as shown in Table 4. In Altamira and Santarém, forest accounted for the largest proportion of land cover but decreased rapidly in the past two decades. Other vegetation in Altamira had a greater rate of increase than agro-pasture, but this trend was inversed in Santarém. There were no savanna areas in Altamira and very limited areas in Santarém, but savanna (or cerrado) in Lucas accounted for 23.9% of the study area in 1990, rapidly decreasing to only 9.5% in 1999. The continuous loss of forest and savanna in Lucas was largely a result of the increase in agro-pasture, the proportion of which increased from 45.8% in 1990 to 67.7% in 2008. Figure 4 shows the LULC distributions in the three study areas, indicating the largest proportion of primary forest in Altamira and Santarém and of agro-pasture in Lucas and indicating the obvious agro-pasture expansion and deforestation within the same periods.

Table 4 also indicates that loss of primary forest between 1991 and 2000 in Altamira resulted in expansion of both agro-pasture and other vegetation classes, but its loss between 2000 and 2008 was mainly due to agro-pasture expansion. In Santarém, deforestation was mainly due to the conversion of primary forest to both agro-pasture and other vegetation classes, especially other vegetation over time. In Lucas, deforestation of primary forest and savanna between 1990 and 1999 was mainly due to agro-pasture expansion, but deforestation area between 1999 and 2008 was considerably decreased due to the constraint of available forest*/*savanna areas, and the limited deforestation of primary forest that did occur was due to the expansion of agro-pasture, impervious surfaces, and other vegetation. The results in Table 4 indicate the considerably different LULC change figures in the three study areas during two detection periods. However, Table 4 only provides the overall information on LULC dynamic change and does not provide detailed information about LULC change trajectories and the corresponding spatial patterns of change.

3.2.2. Analysis of LULC change trajectories at per-pixel scale

The detailed change trajectories for major LULC classes in Table 5 indicate that different study areas in both detection periods had considerably different change trajectories and amounts. Altamira and Santarém have much higher numbers of changed areas than

Table 4. Statistical results of LULC types and corresponding changes at overall scale.

		Area $(km2)$ of LULC types							
	Altamira			Santarém			Lucas		
LULC	1991	2000	2008	1991	1999	2010	1990	1999	2008
F	5220.6	4332.5	3619.2	9948.8	9219.6	8406.8	1045.6	837.4	652.1
S V	996.6	1355.3	1390.1	51.4 1191.4	51.5 1555.9	45.1 2019.7	873.4 12.7	349.5 25.9	335.7 72.4
A	1037.7 43.9	1555.9 62.4	2200.5 74.2	616.8 60.6	951.4 90.8	1281.5 117.1	1677.3 25.9	2389.8 37.6	2480.6 99.7
I W	213.6	206.3	228.5	208.8	208.4	207.4	27.6	22.4	22.2
Total	7512.4			12,077.6			3662.6		

Percentage (%) of each LULC type accounting for total study area $(A_i\%)$

Changed area in km2 (and in percentage) for each LULC type

Notes: (1) LULC types – see Table 3.

(2) A_i [%] of LULC type $i =$ (area of the LULC type i /total study area) \times 100.

(3) Negative values in this table indicate overall area loss of a specific LULC type, and positive values indicate the overall area gain of a specific LULC type during the change detection period.

(4) Changed area for LULC type $i =$ total area of type i at posterior date – total area of type i at prior date.

(5) The % of changed area for LULC type $i =$ the total changed area for type i */*total changed area for the study area at the change detection period.

Lucas, but the percentage of total changed area or average annual percentage of changed area in Altamira is much higher than in Santarém, as shown in Table 5, because Santarém has a large unchanged area of primary forest (see Figure 4 and Table 4). Major LULC change trajectories include deforestation of primary forest, dynamic change (gain or loss) of other vegetation, and agro-pasture in Altamira and Santarém, but in Lucas, the majority of change is the conversion of savanna to agro-pasture. The percentage of gained areas for agro-pasture and other vegetation classes in the three study areas was much higher than

Figure 4. LULC maps of the three study areas derived from Landsat images.

Downloaded by [Michigan State University], [Dengsheng Lu] at 05:04 28 May 2013

Downloaded by [Michigan State University], [Dengsheng Lu] at 05:04 28 May 2013

expansion.

Syansion.

(3) TFD (TSD) – total area of forest (savama) deforestation; TVL (TVG) – total area of other vegetation loss (gain); TAL (TAG) – total area of agro-pasture loss (gain); TIE – total

(4) Calculation:

that of their loss areas. As shown in Table 5, deforestation in Altamira is prone to agropastoral expansion and in Santarém it is prone to expansion of other vegetation type, while in Lucas, deforestation is mainly due to agro-pasture expansion in the 1990s, but in the 2000s, expansion of other vegetation and impervious surface areas becomes another important factor resulting in deforestation. Figure 5 illustrates the spatial distribution of LULC change, indicating that the obvious changes in Altamira and Santarém were the conversion of forest to agro-pasture and other vegetation and the transform between other vegetation and agro-pasture; but for Lucas, one obvious change was the conversion of savanna to agro-pasture between 1990 and 1999 and the expansion of impervious surface areas between 1999 and 2008. In the three study areas, impervious surface increase was mainly at the expense of agro-pasture, although some conversion from forest and other vegetation, especially in rural regions, was observed.

3.2.3. Analysis of LULC change at census sector scale

Based on the percentage of total changed area in a sector, we grouped census sectors into three groups in Altamira, five groups in Santarém, and two groups in Lucas (Figure 6). The patterns and rates of LULC changes illustrated in Figure 6 imply that the distance to the major urban areas, road expansion, and land-use history may be related to LULC change. For example, major deforestation in Altamira began in the early 1970s, coincident with the construction of the Transamazon Highway (see Figure 1) (Moran 1981). In the 1980s, major deforestation occurred close to the Altamira city and along the highway (Moran et al. 1994). Between 1991 and 2000, the sectors away from the urban area (A2 in Figure 6) had higher LULC change rates than in the areas close to the urban area (A1), and the sectors far away from urban (A3) had the lowest change rate. However, the changes between agro-pasture and other vegetation had high proportion near the urban region (see A1), slightly decreased away from urban (see A2), and were lowest in rural regions (see A3). After entering the 2000s, the conversion of forest to other vegetation or agro-pasture was reduced, while the conversions of other vegetation to agro-pasture increased considerably, especially close to the urban region compared with the conversions in the 1990s.

Santarém has a much longer land-use history than the Altamira and Lucas study areas. During the 1990s, the S2 and S1 groups close to the Santarém urban region had higher LULC change rates than the S4 and S5 groups away from urban region, and the dynamic change between other vegetation and agro-pasture accounted for the high proportions in the S1 and S2 groups, while the conversion of forest and other vegetation to agro-pasture accounted for the largest proportion in the S4 group, and the conversion of forest to agropasture accounted for the large proportion in the S5 group (see Figure 6). The S3 group had a lower LULC change rate than other groups because of the forest conservation policy close to the Tapajos River (see Figure 1). From the early 2000s, LULC change in each sector group had higher rates than that in the 1990s. The conversion of agro-pasture to other vegetation accounted for a large proportion in the S1 group and some sectors in the S2 group where the sectors are relatively close to the urban region; on the other hand, the conversion of other vegetation to agro-pasture accounted for a large proportion in most of the sectors in the S2 and S4 groups where the sectors are relatively away from the urban region. In contrast, the conversion from forest to other vegetation accounted for the largest proportion in the S5 group. The S3 group in the 2000s had high LULC change rates due to the road expansion in the Belterra region close to the BR163 highway, resulting in higher conversion from forest and other vegetation to agro-pasture.

Figure 5. LULC change maps at per-pixel scale for the three study areas.

Lucas has a relatively short land-use history because major deforestation had started after the county was established in 1982. Deforestation of forest and savanna was especially high in the 1980s, and reduced rapidly in the 1990s and 2000s (Lu, Hetrick, et al. 2012), because of the restriction of available forest and savanna resources. The percentage of changed areas for the sectors near Lucas City had higher values than the sectors away from the city (L1 versus L2) in 1990–1999, but the inverse in 1999–2008. The proportion of impervious surface areas in 1999–2008 increased much more than in 1990–1999, especially close to the urban area (i.e. the L1 sector group).

Figure 6. LULC change results at census sector scale for the three study areas in the Brazilian Amazon (note: the number in this figure represents the percentage of total changed area accounting for total area in the sector (i.e. total changed area/total area in a sector \times 100)).

3.2.4. Analysis of LULC change at polygon scale

Considering the changes in patch sizes of forest class over time among the three study areas, a common trend was that the number of polygons increased considerably but the average size decreased rapidly (See Table 6), implying increasingly fragmented forest landscape after deforestation. For the other vegetation class, the number of polygons in both Altamira and Santarém increased, similar to forest, but the average size of polygons was much smaller, implying that the other vegetation class was much more fragmented than forest. Altamira had a relatively small average size of other vegetation

			Number of polygons			Average size of polygons		
Study areas	LULC type	1991	2000	2008	1991	2000	2008	
Altamira	F V A	1519 4717 3314	2620 5309 3664	2900 6103 3158	346.1 20.7 30.7	165.9 25.2 42.3	125.0 22.4 69.9	
Santarém	F V A	1991 1380 3849 3475	1999 1877 4589 4185	2010 2292 5582 3779	1991 723.6 31.1 16.0	1999 492.9 34.0 21.1	2010 368.6 36.2 32.0	
Lucas	F S А	1990 348 878 266	1999 383 1082 91	2008 412 1189 240	1990 302.1 98.3 631.7	1999 223.2 23.0 2633.6	2008 162.3 26.0 1036.5	

Table 6. A comparison of average patch sizes (ha) of major LULC types.

Notes: (1) LULC types – F, S, V, and A represent forest, savanna, other vegetation (secondary succession vegetation and plantations), and agro-pasture (i.e. agricultural lands and pasture lands), respectively.

(2) Average size of polygons for a LULC class (unit: ha) = total area of the LULC type*/*number of polygons.

patch compared with Santarém; this may be because the good soil fertility in Altamira resulted in a relatively short rotation period between the dynamic change of other vegetation and agro-pasture (Lu, Moran, and Mausel 2002). For agro-pasture, the number of polygons was highest in the year 1999*/*2000 for both Altamira and Santarém, but the average patch size increased gradually from 1991 to 2008*/*2010, implying an increase in large-scale mechanized agriculture. In Lucas, the number of polygons in the year 1999 had the lowest number but highest average size, implying that the rapid road expansion after 1999 had resulted in the replacement of agro-pasture. Overall, Lucas had much larger average-sized polygons for agro-pasture than Altamira and Santarém. This might be expected considering the large-scale mechanized agriculture found in the county.

The analysis of changes in the number of polygons along different area ranges is helpful for understanding the fragmentation due to LULC change, as shown in Figure 7. When the patch size was greater than 30 ha, the number of polygons sharply decreased, especially in Altamira and Santarém, because deforestation, urbanization, and road expansion often resulted in complex LULC composition. For forest, the number of polygons increased from the early 1990s to the late 2000s, implying increased fragmentation due to deforestation. However, it is also observed that the number of polygons in large patch size (e.g. greater than 500 ha) increases, especially in Santarém. This is because forest, in the early 1990s, having a huge size (thousands of hectares) with a limited number of patches, became forest patches of relatively small size (less than a thousand hectares) due to road construction and deforestation, as shown in Figures 4 and 5. The increased numbers of polygons for the other vegetation class in Altamira and Santarém implied that larger patch sizes appeared over time. The decreased number of relatively large patch sizes of savanna areas in Lucas may imply that a limited area of savanna remained due to its conversion to agro-pasture. Concerning agro-pasture in Altamira and Santarém, the number of polygons gradually decreased over time when patch size was less than 30 ha, but the numbers of polygons increased over time as patch size increased, implying increased farming sizes over time because of the use of mechanization.

Figure 7. Comparison of patch sizes of major LULC types among different dates at the three study areas.

4. Discussion and summary

4.1. Improvement of LULC classification results

Development of accurate LULC classifications has been an active research topic in the past four decades, since the first earth observation satellite was launched in the early 1970s. Great progress in improving LULC classification has been made, including incorporation of multiple sources of remote-sensing data (e.g. optical sensor data, radar, light detection and ranging (lidar)) and*/*or ancillary data (e.g. digital elevation model (DEM), population density), development of advanced classification algorithms (e.g. neural network, support vector machine, random forest decision tree), and application of expert knowledge for post-processing (Lu and Weng 2007; Lu, Batistella, et al. 2012). However, classification is a complex procedure, the results of which may be affected by many factors such as the characteristics of the study area, selected data sources (e.g. remote-sensing data, ancillary data, ground truth data), classification algorithms, and the analyst's experience (Lu and Weng 2007). Previous research has paid much attention to the application of multisource remote-sensing data and advanced classification algorithm, but misclassification often occurred due to the complex biophysical environments, resulting in similar spectral or radiometric data, and due to the constraints of spectral, spatial, and radiometric resolutions in remote sensing data *per se*. In the Brazilian Amazon, we have extensively examined the employment of different sensor data (e.g. optical sensor data, radar) (Li et al. 2011; Li, Lu, Moran, Dutra, et al. 2012; Lu et al. 2011) and different classification algorithms (Li, Lu, Moran, and Sant'Anna et al. 2012; Lu, Batistella, et al. 2012). We found that no matter what remote-sensing data or classification algorithms were used, there were still some misclassifications that could not be automatically separated from the remote-sensing data. Incorporation of human knowledge during the classification procedure is necessary to improve LULC classification. Therefore, the hierarchical-based method that combined automatic classification and manual editing has been proved to be valuable to provide reliable LULC classification (Lu, Hetrick, et al. 2012).

Post-processing of the classification image has been regarded as an effective method to further improve classification accuracy. Ancillary data, such as DEM, are often used by relating expert knowledge of LULC distribution to topographic factors (e.g. elevation, slope, aspect) (Lu and Weng 2007). The key is to develop the expert rules that can be used to correct the misclassification. This research provides an alternative to conduct the post-processing by establishing some reasoning knowledge based on the multitemporal classification results. This is especially valuable when good-quality ancillary data are not available, such as in the Brazilian Amazon. Since a variety of sensor data with different spatial and spectral resolutions are available, more research should be focused on the combined use of the different source data or on the modelling of multiscale remote-sensing data to improve LULC classification.

4.2. The necessity of LULC change detection at different scales

The information for detailed LULC change trajectories is often required for change detection research and is often derived using the post-classification comparison approach at per-pixel level (Lu, Mausel, Brondizio, et al. 2004; Kennedy et al. 2009; Hansen and Loveland 2012). Concerning the application of LULC change detection results, analysis of LULC change at multiple scales may provide new insights for better understanding of the spatial patterns and rates of LULC change and of the relationship between LULC change and socioeconomic variables collected at administrative units at varying scales of analysis.

At overall scale, the change detection results provide overall LULC change trends, but conceal the inner change trajectories and their spatial patterns, especially the dynamic changes between other vegetation and agro-pasture in this research. For example, the gain of agro-pasture lands can be due to the conversion from primary forest, other vegetation, and water*/*wetland, while the loss of agro-pasture lands can be due to the conversion from agro-pasture to other vegetation or to impervious surface areas. The overall-scale change detection results cannot provide the change trajectories, but the per-pixel based change detection analysis overcomes this shortcoming. The per-pixel-based change detection analysis is especially valuable when information on detailed LULC change spatial patterns is required.

Although change detection studies at census sector and polygon scales are not common in previous research, their results indeed provide some new opportunities for analysis that the per-pixel-based change detection results do not, such as the ability to relate the change results to human-induced activities. In order to better manage the deforested areas, it is necessary to understand the anthropogenic factors affecting deforestation or LULC change. Since the anthropogenic-relevant variables, such as demographic and socioeconomic data, are often organized and accessible at administration units (e.g. census sectors, township, or county level), we need to examine the LULC change at the same scales corresponding to the administration units. At polygon scale, we may better understand how human-induced activities, such as deforestation, road construction, and urbanization, affect the fragmentation of LULC distribution. Therefore, it is desirable to implement LULC change detection at multiple scales to better examine the LULC dynamic change in a specific study area.

4.3. A summary of research results

Through the analysis of LULC change at different scales based on three dates of Landsat images among three study areas in the Brazilian Amazon, this research indicates the necessity to investigate LULC change at multiple scales for better understanding of the mechanisms of LULC change and the effective use of the LULC results in interdisciplinary research. The major conclusions can be summarized as follows.

- (1) Change detection at overall scale provides important information of overall LULC change trends but conceals inner LULC change within the study area and their spatial patterns.
- (2) Change detection at per-pixel scale provides the detailed LULC change trajectories and their spatial patterns. These results are often the fundamental data source for further examining LULC change at other scales, such as different administration units.
- (3) Change analysis at the census sector scale provides valuable data sets for the analysis involving the linkage of LULC change and anthropogenic factors, such as population density and socioeconomic conditions.
- (4) Change analysis at polygon scale can provide important data sources for examining how human- and nature-induced factors affect LULC fragmentation within the study area.

Acknowledgements

The authors wish to thank the National Institute of Child Health and Human Development at NIH (grant # R01 HD035811) for their support of this research, addressing population and environment reciprocal interactions in several regions of the Brazilian Amazon. Any errors are solely the responsibility of the authors and not of the funding agencies. The authors also thank the anonymous reviewers for their constructive suggestions and comments for revising this paper.

References

Asner, G. P. 2001. "Cloud Cover in Landsat Observation of the Brazilian Amazon." *International Journal of Remote Sensing* 22: 3855–3862.

- Cardille, J. A., and J. A. Foley. 2003. "Agricultural Land-Use Change in Brazilian Amazônia between 1980 and 1995: Evidence from Integrated Satellite and Census Data." *Remote Sensing of Environment* 87: 551–562.
- Carreiras, J. M. B., J. M. C. Pereira, M. L. Campagnolo, and Y. E. Shimabukuro. 2006. "Assessing the Extent of Agriculture*/*Pasture and Secondary Succession Forest in the Brazilian Legal Amazon Using SPOT VEGETATION Data." *Remote Sensing of Environment* 101: 283–298.
- Chander, G., B. L. Markham, and D. L. Helder. 2009. "Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors." *Remote Sensing of Environment* 113: 893–903.
- Chavez, P. S., Jr. 1996. "Image-based Atmospheric Corrections Revisited and Improved." *Photogrammetric Engineering and Remote Sensing* 62: 1025–1036.
- Chen, G., G. J. Hay, L. M. T. Carvalho, and M. A. Wulder. 2012. "Object-based Change Detection." *International Journal of Remote Sensing* 33: 4434–4457.
- Congalton, R. G., and K. Green. 2008. *Assessing the Accuracy of Remotely Sensed Data: Principles and Practices*. 2nd ed. Boca Raton, FL: CRC Press, Taylor & Francis Group.
- Coppin, P., I. Jonckheere, K. Nackaerts, B. Muys, and E. Lambin. 2004. "Digital Change Detection Methods in Ecosystem Monitoring: A Review." *International Journal of Remote Sensing* 25: 1565–1596.
- Du, Y., P. M. Teillet, and J. Cihlar. 2002. "Radiometric Normalization of Multitemporal High-Resolution Satellite Images with Quality Control for Land Cover Change Detection." *Remote Sensing of Environment* 82: 123–134.
- Fearnside, P. M. 2005. "Deforestation in Brazilian Amazonia: History, Rates, and Consequences." *Conservation Biology* 19: 680–688.
- Foody, G. M. 2002. "Status of Land Cover Classification Accuracy Assessment." *Remote Sensing of Environment* 80: 185–201.
- Hansen, M. C., and T. R. Loveland. 2012. "A Review of Large Area Monitoring of Land Cover Change Using Landsat Data." *Remote Sensing of Environment* 122: 66–74.
- Heo, J., and T. W. FitzHugh. 2000. "A Standardized Radiometric Normalization Method for Change Detection Using Remotely Sensed Imagery." *Photogrammetric Engineering and Remote Sensing* 66: 173–181.
- Hirsch, A. I., W. S. Little, R. A. Houghton, N. A. Scott, and J. D. White. 2004. "The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis Using a Process-Based Model." *Global Change Biology* 10: 908–924.
- Huang, C., S. N. Goward, J. G. Masek, N. Thomas, Z. Zhu, and J. E. Vogelmann. 2010. "An Automated Approach for Reconstructing Recent Forest Disturbance History Using Dense Landsat Time Series Stacks." *Remote Sensing of Environment* 114: 183–198.
- Kennedy, R. E., P. A. Townsend, J. E. Gross, W. B. Cohen, P. Bolstad, Y. Q. Wang, and P. Adams. 2009. "Remote Sensing Change Detection Tools for Natural Resource Managers: Understanding Concepts and Tradeoffs in the Design of Landscape Monitoring Projects." *Remote Sensing of Environment* 113: 1382–1396.
- Li, G., D. Lu, E. Moran, L. Dutra, and M. Batistella. 2012. "A Comparative Analysis of ALOS PALSAR L-band and RADARSAT-2 C-band Data for Land-Cover Classification in a Tropical Moist Region." *ISPRS Journal of Photogrammetry and Remote Sensing* 70: 26–38.
- Li, G., D. Lu, E. Moran, and S. Hetrick. 2011. "Land-cover Classification in a Moist Tropical Region of Brazil with Landsat TM Imagery." *International Journal of Remote Sensing* 32: 8207–8230.
- Li, G., D. Lu, E. Moran, and S. J. S. Sant'Anna. 2012. "A Comparative Analysis of Classification Algorithms and Multiple Sensor Data for Land Use*/*Land Cover Classification in the Brazilian Amazon." *Journal of Applied Remote Sensing* 6: 061706. doi:10.1117*/*1.JRS.6.061706.
- Lu, D., M. Batistella, G. Li, E. Moran, S. Hetrick, C. Freitas, L. Dutra, and S. J. S. Sant'Anna. 2012. "Land Use*/*Cover Classification in the Brazilian Amazon Using Satellite Images." *Brazilian Journal of Agricultural Research* 47: 1185–1208.
- Lu, D., S. Hetrick, E. Moran, and G. Li. 2012. "Application of Time Series Landsat Images to Examining Land Use*/*Cover Dynamic Change." *Photogrammetric Engineering & Remote Sensing* 78: 747–755.
- Lu, D., G. Li, E. Moran, L. Dutra, and M. Batistella. 2011. "A Comparison of Multisensor Integration Methods for Land-Cover Classification in the Brazilian Amazon." *GIScience & Remote Sensing* 48: 345–370.
- Lu, D., P. Mausel, M. Batistella, and E. Moran. 2004. "Comparison of Land-Cover Classification Methods in the Brazilian Amazon Basin." *Photogrammetric Engineering and Remote Sensing* 70: 723–731.
- Lu, D., P. Mausel, E. Brondizio, and E. Moran. 2004. "Change Detection Techniques." *International Journal of Remote Sensing* 25: 2365–2407.
- Lu, D., E. Moran, and P. Mausel. 2002. "Linking Amazonian Secondary Succession Forest Growth to Soil Properties." *Land Degradation and Development* 13: 331–343.
- Lu, D., and Q. Weng. 2007. "A Survey of Image Classification Methods and Techniques for Improving Classification Performance." *International Journal of Remote Sensing* 28: 823–870.
- Lucas, R. M., M. Honzák, P. J. Curran, G. M. Foody, R. Mline, T. Brown, and S. Amaral. 2000. "The Regeneration of Tropical Forests within the Legal Amazon." *International Journal of Remote Sensing* 21: 2855–2881.
- Masek, J. G., C. Huang, R. Wolfe, W. Cohen, F. Hall, J. Kutler, and P. Nelson. 2008. "North American Forest Disturbance Mapped from a Decadal Landsat Record." *Remote Sensing of Environment* 112: 2914–2926.
- Moran, E. F. 1981. *Developing the Amazon*. Bloomington: Indiana University Press.
- Moran, E. F., E. Brondízio, P. Mausel, and Y. Wu. 1994. "Integrating Amazonian Vegetation, Land Use, and Satellite Data." *BioScience* 44: 329–338.
- Roberts, D. A., I. Numata, K. Holmes, G. Batista, T. Krug, A. Monteiro, B. Powell, and O. A. Chadwick. 2002. "Large Area Mapping of Land-Cover Change in Rondonia Using Decision Tree Classifiers." *Journal of Geophysical Research* 107 (D20): 8073 LBA 40-1–40-18.
- Singh, A. 1989. "Digital Change Detection Techniques Using Remotely Sensed Data." *International Journal of Remote Sensing* 10: 989–1003.
- Skole, D. L., W. H. Chomentowski, W. A. Salas, and A. D. Nobre. 1994. "Physical and Human Dimension of Deforestation in Amazonia." *BioScience* 44: 314–328.
- Thomas, N. E., C. Huang, S. N. Goward, S. Powell, K. Rishmawi, K. Schleeweis, and A. Hinds. 2011. "Validation of North American Forest Disturbance Dynamics Derived from Landsat Time Series Stacks." *Remote Sensing of Environment* 115: 19–32.
- Tso, B., and P. M. Mather. 2009. *Classification Methods for Remotely Sensed Data*. London: Taylor & Francis.
- Vogelmann, J. E., B. Tolk, and Z. Zhu. 2009. "Monitoring Forest Changes in the Southwestern United States Using Multitemporal Landsat Data." *Remote Sensing of Environment* 113: 1739–1748.
- Yang, X., and C. P. Lo. 2000. "Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images." *Photogrammetric Engineering and Remote Sensing* 66: 967–980.