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This paper provides a comparative analysis of land-use and land-cover (LULC)
changes among three study areas with different biophysical environments in the
Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to
study area. Landsat images acquired during the years of 1990/1991, 1999/2000, and
2008/2010 were used to examine LULC change trajectories with the post-classification
comparison approach. A classification system composed of six classes – forest, savanna,
other vegetation (secondary succession and plantations), agro-pasture, impervious sur-
face, and water – was designed for this study. A hierarchical-based classification method
was used to classify Landsat images into thematic maps. This research shows different
spatiotemporal change patterns, composition, and rates among the three study areas
and indicates the importance of analysing LULC change at multiple scales. The LULC
change analysis over time for entire study areas provides an overall picture of change
trends, but detailed change trajectories and their spatial distributions can be better
examined at a per-pixel scale. The LULC change at the polygon scale provides the infor-
mation of the changes in patch sizes over time, while the LULC change at census sector
scale gives new insights on how human-induced activities (e.g. urban expansion, roads,
and land-use history) affect LULC change patterns and rates. This research indicates
the necessity to implement change detection at multiple scales for better understanding
the mechanisms of LULC change patterns and rates.

1. Introduction

Deforestation has been regarded as one of the most important factors affecting cli-
mate change, biodiversity, and other environmental conditions (Skole et al. 1994; Hirsch
et al. 2004; Fearnside 2005). Monitoring of forest and savanna deforestation in the
Brazilian Amazon has received much attention in the past three decades. Two systems (i.e.
PRODES – Programme for the Estimation of Deforestation in the Brazilian Amazon (http://
www.obt.inpe.br/prodes/) and DETER – Real Time Deforestation Monitoring System
(http://www.obt.inpe.br/deter/)) have been developed to monitor annual deforestation using
Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data, respec-
tively. According to a National Institute for Space Research (INPE) report, a total area
of 392,020 km2 of forest was deforested in the Brazilian Amazon between 1988 and 2011
(http://www.mongabay.com/brazil.html). A large area of primary forest and savanna has
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been converted into secondary succession, agroforestry, pasture, agricultural fields, and
infrastructure (Lucas et al. 2000; Roberts et al. 2002; Cardille and Foley 2003; Carreiras
et al. 2006; Lu, Hetrick, et al. 2012). In addition to the monitoring of primary forest, timely
detection of other land-use and land-cover (LULC) change, especially secondary succes-
sion and agriculture expansion, is also important for better management and planning of
the deforested areas (Lu, Hetrick, et al. 2012).

Research on LULC change detection has attracted much attention in the past three
decades (e.g. Singh 1989; Coppin et al. 2004; Lu, Mausel, Brondizio, 2004; Kennedy
et al. 2009; Chen et al. 2012). Multitemporal remotely sensed data, especially time series
Landsat images, have been widely used for examining LULC change (Masek et al. 2008;
Vogelmann, Tolk, and Zhu 2009; Huang et al. 2010; Thomas et al. 2011; Hansen and
Loveland 2012). Although many change detection techniques have been developed, most
are only used to detect binary change and nonchange categories (Lu, Mausel, Brondizio,
et al. 2004). In practice, detailed ‘from–to’ change trajectories are often required for bet-
ter understanding of LULC change patterns and rates. Post-classification comparison is the
most common method used to examine LULC change trajectories. Traditionally, LULC
change detection is implemented at the per-pixel level, but analysis of LULC change
at multiple scales may provide new insights on change patterns and rates. Therefore,
this paper aims to analyse LULC change at different scales: per-pixel, polygon, cen-
sus sector, and total study area using multitemporal Landsat images acquired during the
years of 1990/1991, 1999/2000, and 2008/2010 within three study areas having different
biophysical conditions in the Brazilian Amazon.

2. Methods

Altamira and Santarém in Pará State and Lucas do Rio Verde (hereafter, Lucas) in Mato
Grosso State were selected for this research (Figure 1). The three study areas have dif-
ferent biophysical and socioeconomic conditions, as summarized in Table 1. This research
employs multitemporal Landsat images to examine LULC change. Figure 2 provides a flow
chart of this research, which includes image preprocessing, image classification using the
hierarchical-based method, and change detection analysis at different scales.

2.1. Data collection and preprocessing

The Landsat images used in this research are summarized in Table 2. All Landsat images
with spatial resolution of 30 m were atmospherically calibrated with the improved image-
based dark object subtraction method (Chavez 1996; Chander, Markham, and Helder
2009). The Landsat Thematic Mapper (TM) images that were downloaded from US
Geological Survey (USGS; http://glovis.usgs.gov/) had previously been georeferenced into
the Universal Transverse Mercator (UTM) coordinate system, and their geometric accu-
racy met our research requirement, but the TM images obtained from Brazilian INPE
had geometric errors that required implementing image-to-image registration based on the
georeferenced images. Root mean square errors of less than 0.5 pixels were obtained.

In the moist tropical regions of the Brazilian Amazon, cloud cover is often a problem
prohibiting the collection of cloud-free Landsat images (Asner 2001). In the Altamira and
Santarém study areas, completely cloud-free Landsat images are not always available; thus,
we used multiple Landsat images to remove the cloud/shadow problem, assuming that the
clouds are located at different areas at various image acquisition dates. For example, in
Altamira, we used the 2000 Landsat Enhanced Thematic Mapper Plus (ETM+) image as
a reference image because of its relatively good quality for the majority of the study area.
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Figure 1. Three study regions – Altamira and Santarém in Pará State and Lucas do Rio Verde in
Mato Grosso State. Background images are red-band images from the Landsat 5 scenes acquired in
July 2010 for Altamira and Santarém and in July 2008 for Lucas do Rio Verde. The dashed rectangles
delineate the study areas in Altamira and Santarém and the dashed polygon delineates the boundary
of Lucas County. The white circle and black dot indicate the major urban location for each of the
study areas.

The cloud/shadow areas in this image were replaced with the 1999 Landsat TM image (see
Figure 3). Because some clouds/shadows were still on both the 2000 ETM+ and 1999 TM
images, the 2003 TM image was used to replace the clouds/shadows because no other
cloud-free Landsat images were available in the years close to 2000. Before implementing
the replacement of clouds/shadows in a reference image, image-to-image normalization
between the reference image and subject images was conducted by a regression-based
method using pseudo-invariant objects, such as road intersections and water, which were
selected from the multiple Landsat images (Heo and FitzHugh 2000; Yang and Lo 2000;
Du, Teillet, and Cihlar 2002). The reflectance values from the 2000 ETM+ images were
used as a dependent variable, and a regression model for each band was developed to cal-
ibrate the 1999 TM and the 2003 TM images. The same method was used in Santarém
for replacement of clouds/shadows in the reference image. Because of the confusion
of the spectral signatures among clouds, urban landscape, and agricultural lands, and
between shadows and water bodies, automatically detecting clouds/shadows, especially the
relatively light clouds/shadow, is often difficult. Therefore, the clouds/shadows were visu-
ally interpreted on the colour composites by assigning near infrared, shortwave infrared,
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Multitemporal Landsat images

Change analysis at per-pixel scale by using
post-classification comparison method

Change analysis at polygon scale

Change analysis at census sector scale

Change analysis at overall scale based on
multitemporal classification images

Accuracy assessment of
classification images

Post-processing of the
classification images

Land-use and land-cover classification for
each Landsat imagery using hierarchical-

based classification method

Image preprocessing
(radiometric and atmospheric calibration,

image-to-image registration)

Land-use and land-cover change
analysis at different scales

QuickBird image and ancillary data
(field survey data, census vector data)

Figure 2. Flow chart of the research.

and red wavelength band images as red, green, and blue, respectively. The identified pixels
having clouds/shadows in the reference image were then replaced with the spectral values
of the same location from other spectrally normalized Landsat images.

Field surveys were conducted in Altamira in July–August 2009, in Santarém in
2010 and 1999, and in Lucas in 2009. The field surveys mainly collected sample
plots in rural areas and documented different stages of secondary forest, pasture, and
crop fields, as described in Li et al. (2011). QuickBird images for the three study
areas were used to collect sample plots in urban and urban–rural frontiers. The ref-
erence data collected from field surveys and QuickBird images had two roles in this
research, one being to support the identification of thresholds used in the hierarchical-
based classification method and the other to be used as sample plots for accuracy
assessment.

According to our project requirement and this research purpose, a classification system
with six LULC classes – primary forest, savanna, other vegetation (e.g. secondary suc-
cession, plantations), agro-pasture (agricultural fields, pasture), impervious surface, and
water – was designed for this study. In cases where clouds/shadows could not be com-
pletely removed from the multiple Landsat images, another class called cloud/shadow
was included in preliminary classification results, but this class was removed from the
final result through a post-processing procedure to accurately examine the LULC change
patterns and rates in these study areas.
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Table 2. Landsat images and other data sources used in research.

Data sets Altamira Santarém Lucas

Landsat
images

Landsat 5 TM image on
20 July 1991 with
EarthSat-Orthorectified
image.

Landsat 5 TM (L1G) on
11 July 1991, but
clouds/shadows were
replaced with a TM
image (L1G) on
25 June 1991

Landsat 5 TM image
(from INPE) on
9 August 1990

Landsat 7 ETM+ images
(L1G) on 4 July 2000,
but clouds/shadows
were replaced with two
TM images on
19 August 1999 (L1G)
and 22 August 2003
(L1G)

Landsat 5 TM (L1G) on
2 August 1999, but
clouds/shadows were
replaced with an
ETM+ image (L1G)
on 10 August 1999

Landsat 7 ETM+
image (L1G) on
10 August 1999

Landsat 5 TM image
(from INPE) on
2 July 2008

Landsat 5 TM image
(from INPE) on
29 June 2010, but
clouds/shadows were
replaced with a TM
image (L1G) on
12 July 2009

Landsat 5 TM image
(from INPE) on
22 May 2008

QuickBird
image

26 September 2008 25 June 2008 20 June 2008

Fieldwork 2009 1999 and 2010 2009

Census data The 2010 Brazilian census sector data were used

Notes: TM represents Landsat Thematic Mapper sensor, and ETM+ represents Landsat Enhanced Thematic
Mapper Plus sensor. The Landsat images from USGS are L1G products with good geometric accuracy, but the
images from INPE have geometric errors that require conducting image-to-image registration using L1G products
as reference images.

2.2. Development of LULC datasets and accuracy assessment

2.2.1. LULC classification with the hierarchical-based method

Many classification algorithms are available (Lu and Weng 2007; Tso and Mather 2009);
however, developing an accurate classification result from remotely-sensed data is still a
challenge. Many factors, such as spatial and spectral resolution of the satellite imagery,
available reference data, classification algorithm, and the analyst’s experience, may affect
the classification (Lu and Weng 2007). The sufficient number of representative training
samples is especially important for the supervised classification algorithms. Many previ-
ous studies have documented the difficulty in LULC classification in the Brazilian Amazon
due to the spectral confusion between different LULC types, such as among impervious
surfaces, bare soils and non-vegetation wetland, and the complex vegetation types and
structures (Lu, Mausel, Batistella, et al. 2004; Lu, Batistella, et al. 2012). In our previous
research in the Brazilian Amazon basin, we have extensively examined LULC classification
using different sensor data (e.g. Landsat, ASTER, SPOT, and radar) and different classifi-
cation algorithms (e.g. maximum likelihood, neural network, decision tree, support vector
machine, K-nearest neighbour) (Li et al. 2011; Li, Lu, Moran, Dutra, et al. 2012; Li, Lu,
Moran, and Sant’Anna 2012; Lu, Batistella, et al. 2012). We found that the hierarchical-
based classification method is valuable for LULC classification, especially when training
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2000

1999

2003

Figure 3. A comparison of multiple Landsat images (near infrared, shortwave infrared, and red-
band images were assigned as red, green, and blue, respectively, in this colour composite) in Altamira
showing the cloud/shadow problem (note: the 2000 ETM+ scene image covers the entire study area,
but both the 1999 and 2003 TM scene images lack a small section of data).

sample data are not available for historical remote-sensing data (Lu, Hetrick, et al. 2012).
The hierarchical-based method used four steps in the classification procedure: (1) stratifi-
cation of LULC classes to reduce the spectral confusion among different classes, (2) use
of the analyst’s knowledge and experience to merge the clusters into meaningful LULC
classes, (3) manually editing the classification results in each step to further refine the mis-
classified classes, and (4) post-processing based on the multitemporal classified images to
further correct misclassification. A detailed description of the hierarchical-based classifi-
cation method is provided in Lu, Hetrick, et al. (2012). Therefore, this method is used in
this research for LULC classification for the three study areas.

2.2.2. Refinement of LULC classification results

Even though the majority of clouds/shadows were removed from the reference image, some
dispersed clouds/shadows still remained because some clouds were in the same location in
differently dated images (Figure 3). It is important to further remove clouds/shadows in the
classified images because of the requirement of accurately analysing the LULC dynamic
changes. A comparison of the multitemporal classification images and Landsat colour com-
posites among 1991, 2000, and 2008 in Altamira indicated that many clouds/shadows were
located in forest areas. We employed three successive steps to replace the cloud/shadow
pixels with the specific LULC types in the classification images.

(1) Automatic replacement: if the pixels were classified as clouds/shadows in the
prior-date classification image but were classified as forest in the posterior-date
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classification image, these pixels in the prior-date classification image were re-
assigned as forest.

(2) Visual editing: the classified image was overlaid on a corresponding Landsat colour
composite, highlighting the pixels of clouds/shadows and assigning these pixels to
a proper LULC class by visual interpretation of the colour composite.

(3) Majority filtering: some single pixels of clouds/shadows in the classification
images were removed using the majority filtering function (i.e. the pixel of the
clouds/shadows was used as a centre and a majority filter with a window size of
5 by 5 pixels was used to re-assign a LULC class to the centre pixel).

In addition to the rules that were used for removal of clouds/shadows, other rules were
used to correct the misclassification between primary forest and other vegetation (mainly
advanced succession) classes and between impervious surface and agro-pasture.

(1) If the pixels in the prior-date classification image were forest, but were difficult to
determine as either primary forest or advanced succession in the posterior-date clas-
sification image, re-assign these pixels to forest in the posterior-date classification
image.

(2) If the pixels in the prior-date classification image were other vegetation class,
but were difficult to determine as either other vegetation or primary forest in the
posterior-date image, re-assign these pixels to other vegetation in the posterior-date
classification image.

(3) If the pixels in the prior-date classification image were impervious surface, but
were difficult to determine as either agro-pasture or impervious surfaces in the
posterior-date classification image, re-assign these pixels to impervious surfaces.

In order to implement accurate analysis of agro-pasture dynamic change in rural areas, it is
necessary to distinguish agro-pasture in rural area from grass in urban landscape because
the similar spectral features between grass in urban landscapes and pasture in rural land-
scapes during the dry season often results in misclassification. However, pasture is mainly
distributed in rural landscapes; so, we were able to visually define the boundary of urban
landscapes and re-assign the classified agro-pasture in urban landscape as grass. After
all the above-mentioned post-processing procedures were conducted on the classification
images, accuracy assessments were implemented for the three study areas.

2.2.3. Evaluation of LULC classification results

Accuracy assessment is often required to better understand the quality and reliability of a
classification image. In general, overall classification accuracy and kappa coefficient are
often used to assess the overall performance in a classification, while producer’s accuracy
and user’s accuracy are used to evaluate the performance of each LULC class. These param-
eters are calculated from the error matrix, as described in previous literature (e.g. Foody
2002; Congalton and Green 2008). In this study, a total of 413 sample plots were collected
from the 2009 fieldwork and the 2008 QuickBird image in Altamira, and they were used
to evaluate the 2008 classification image. In Santarém, 546 sample plots were collected
from the 2010 fieldwork and the 2008 QuickBird image and were used for evaluating the
2010 classification image. Another 265 sample plots were collected in the 1999 fieldwork
and were used to evaluate the 1999 classification image. In Lucas, a total of 300 sample
plots were collected from the 2008 QuickBird images and the 2009 field survey and were
used to evaluate the 2008 classification image. The QuickBird images mainly covered
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the urban landscapes, and therefore these images were primarily used to collect samples
in the urban landscape, while field surveys were conducted in the deforested regions in
rural areas. A detailed description of field data collection is provided in Li et al. (2011).
Because reference data were not available for other dates of classification images, no accu-
racy assessments were conducted for these results, but we were confident that these results
had similar classification accuracy based on our previous work using the hierarchical-based
classification method (Lu, Hetrick, et al. 2012).

2.3. Analysis of LULC dynamic changes at multiple scales

In general, change detection is implemented at per-pixel level based on the classified
images. However, change detection analysis can also be conducted at other scales such
as polygon, census sector, and overall scales, which are the foci of this research.

2.3.1. Analysis of LULC change at overall scale

The total area for each LULC class in each study area was calculated from the per-
pixel-based classification image. The proportion of each LULC type in a study area was
calculated as:

Ai% of LULC type i = (area of the LULC type i/total study area) × 100. (1)

Meanwhile, the change for each LULC type in a study area was calculated:

Ai = Ait1 − Ait2, (2)

where Ait1 and Ait2 represent a total area of the LULC type i at date t1 and date t2, respec-
tively. The change analysis at overall scale provided the overall gain or loss for specific
LULC types, but cannot provide the detailed LULC trajectories.

2.3.2. Analysis of LULC change at per-pixel scale

The post-classification comparison approach was used to examine the detailed LULC
change trajectories at per-pixel scale. The major change trajectories in this research
included the following.

(1) Deforestation of primary forest: the conversion from primary forest to other
vegetation, or to agro-pasture, or to impervious surfaces.

(2) Deforestation of savanna: the conversion from savanna to other vegetation, or to
agro-pasture, or to impervious surfaces.

(3) Deforestation of other vegetation: the conversion from other vegetation to agro-
pasture or to impervious surfaces.

(4) Loss of agro-pasture lands: the conversion from agro-pasture to other vegetation or
to impervious surfaces.

(5) Other changes: water change and the changes due to the errors of image-to-image
registration. These changes were not the foci of this research.

From the above-mentioned major LULC change trajectories, we can further examine:
(1) dynamic change of other vegetation class (gain due to the deforestation of primary
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forest and savanna, and loss from the conversion from other vegetation to agro-pasture and
to impervious surfaces); (2) dynamic change of agro-pasture (gain due to the conversion
from primary forest, savanna, and other vegetation to agro-pasture, and loss due to the con-
version from agro-pasture to other vegetation or impervious surfaces); and (3) expansion of
impervious surface areas (e.g. gain due to conversion from primary forest, other vegetation,
savanna, and agro-pasture to impervious surfaces).

The change and no change areas were calculated from each change detection result,
and the percentage of total changed area was calculated as (total changed area/total study
area) × 100; the annual percentage of changed area was calculated as percentage of total
changed area/number of years during the change detection period. Meanwhile, the area and
percentage of each change trajectory were calculated from the change detection images for
analysing the change detection trends among the three study areas.

2.3.3. Analysis of LULC change at census sector scale

Census sectors, as defined by the Instituto Brasileiro de Geografia e Estatística (IBGE),
are the minimum areal units created for the purpose of cadastral control of data collection.
Many important variables related to population and economic conditions are organized
at the census sector scale and are accessible for public use. These variables are critical
for examining forces driving LULC change; thus, it is important to examine the LULC
dynamic change at the sector scale, but this has not been examined in previous research.
Here, we examined the LULC change at the sector scale as defined by the 2010 Brazilian
census. Emphasis was placed on the LULC change in rural landscapes for examining defor-
estation, regeneration, and agriculture dynamic change. A pie graph was used to illustrate
the proportions of each changed LULC type based on the percentage of changed area at
each census sector. Since some census sectors partially located outside of the classification
image, only the census sectors within the study area were analysed.

2.3.4. Analysis of LULC change at polygon scale

The classification system used in this research includes six LULC classes – primary for-
est, savanna, other vegetation, agro-pasture, impervious surface, and water. There is no
savanna in Altamira and very limited savanna areas in Santarém, but savanna in Lucas
accounted for a large proportion of land cover in the 1980s and 1990s. Impervious sur-
face area and water account for a very small proportion in the three study areas, and they
are not the foci of this research. Therefore, the emphasis of LULC change at the poly-
gon scale in this research was on the dynamic change of forest, agro-pasture, and other
vegetation classes for Altamira and Santarém and of forest, savanna and agro-pasture for
Lucas. The classified images in raster format were converted into vector format shape-
file polygons. Polygons of area less than 2 ha were merged to the nearest polygon by
considering the minimum analysis size of these LULC types and the reduction of noise
caused by the per-pixel-based classification method. The areas of all polygons for each
identified class were then calculated, and the corresponding number of polygons with
each polygon area range of less than 5 ha (5–10), (10–30), (30–50), (50–100), (100–200),
(200–500), and greater than 500 ha, was calculated (note: (5–10) means area ranges of
greater than or equal to 5 ha but less than 10 ha). The scale-bar graph for each polygon
area range for these LULC types was used to examine the dynamic change of patch sizes
at different dates and study areas for understanding the patterns of these LULC dynamic
changes.
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3. Results

3.1. Evaluation of LULC classification results

The classification accuracy assessment results for the three study areas indicated that the
hierarchical-based classification method effectively classified Landsat images into six-class
thematic maps (see Table 3), providing the fundamental data sources for examining LULC

Table 3. Accuracy assessment results for the three study areas.

Accuracy assessment for the 2008 classified image in Altamira

Types F S V A I W RT CT PA UA

F 126 31 1 2 160 131 96.2 78.8
S
V 5 79 5 89 122 64.8 88.8
A 12 88 5 2 107 96 91.7 82.2
I 2 31 1 34 36 86.1 91.2
W 23 23 28 82.1 100

Overall accuracy: 84.0%; kappa: 0.78

Accuracy assessment for the 2010 classified image in Santarém

F 168 11 179 172 97.7 93.8
S 15 15 15 100.0 100.0
V 2 152 28 182 165 92.1 83.5
A 1 122 123 150 81.3 99.2
I 1 29 30 29 100.0 96.7
W 15 17 15 100.0 88.2

Overall accuracy: 91.8%; kappa: 0.89

Accuracy assessment for the 1999 classified image in Santarém

F 86 5 1 92 86 100.0 93.5
S 15 15 15 100.0 100.0
V 49 12 61 55 89.1 80.3
A 1 66 67 81 81.5 98.5
I 2 13 15 14 92.9 86.7
W 1 14 15 14 100.0 93.3

Overall accuracy: 91.7%; kappa: 0.89

Accuracy assessment for the 2008 classified image in Lucas

F 51 51 54 94.4 100.0
S 3 36 2 41 45 80.0 87.8
V 6 26 32 27 96.3 81.2
A 3 1 107 2 113 109 98.2 94.7
I 2 31 33 33 93.9 93.9
W 30 30 32 93.7 100.0

Overall accuracy: 93.7%; kappa: 0.92

Notes: LULC types – F, S, V, A, I, and W represent forest, savanna, other vegetation (i.e. secondary succession
vegetation and plantations), agro-pasture (i.e. agricultural and pasture lands), impervious surface areas, and water,
respectively. RT, CT, PA, and UA represent row total, column total, producer’s accuracy, and user’s accuracy,
respectively.
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change trajectories. Santarém and Lucas have higher overall classification accuracy (i.e.
91.7–93.7%) than Altamira (i.e. 84%). The major problem causing relatively low accuracy
in Altamira was the misclassification between advanced succession vegetation and primary
forest due to their complex vegetation stand structure and species composition and between
initial succession (other vegetation) and dirty pasture (agro-pasture) due to the lack of a
clear boundary between them. A similar situation was present in Santarém, but less so due
to lower fertility conditions. For Lucas, some savanna (cerrado) was confused with other
vegetation or agro-pasture due to the wide variation of savanna in species composition
and density (Lu, Hetrick, et al. 2012). Although no accuracy assessment for other dates of
classified images in the three study areas was implemented due to the lack of reference data,
their classification results were believed to have similar accuracies, as our previous research
had proved that the hierarchical-based classification method was reliable and stable (Lu,
Hetrick, et al. 2012).

3.2. Analysis of LULC change at different scales

3.2.1. Analysis of LULC change at overall scale

A comparative analysis of the total area for each LULC class among the three study areas
indicated that the composition of LULC classes varied considerably at different dates, as
shown in Table 4. In Altamira and Santarém, forest accounted for the largest proportion
of land cover but decreased rapidly in the past two decades. Other vegetation in Altamira
had a greater rate of increase than agro-pasture, but this trend was inversed in Santarém.
There were no savanna areas in Altamira and very limited areas in Santarém, but savanna
(or cerrado) in Lucas accounted for 23.9% of the study area in 1990, rapidly decreasing to
only 9.5% in 1999. The continuous loss of forest and savanna in Lucas was largely a result
of the increase in agro-pasture, the proportion of which increased from 45.8% in 1990 to
67.7% in 2008. Figure 4 shows the LULC distributions in the three study areas, indicating
the largest proportion of primary forest in Altamira and Santarém and of agro-pasture in
Lucas and indicating the obvious agro-pasture expansion and deforestation within the same
periods.

Table 4 also indicates that loss of primary forest between 1991 and 2000 in Altamira
resulted in expansion of both agro-pasture and other vegetation classes, but its loss between
2000 and 2008 was mainly due to agro-pasture expansion. In Santarém, deforestation was
mainly due to the conversion of primary forest to both agro-pasture and other vegetation
classes, especially other vegetation over time. In Lucas, deforestation of primary forest
and savanna between 1990 and 1999 was mainly due to agro-pasture expansion, but defor-
estation area between 1999 and 2008 was considerably decreased due to the constraint of
available forest/savanna areas, and the limited deforestation of primary forest that did occur
was due to the expansion of agro-pasture, impervious surfaces, and other vegetation. The
results in Table 4 indicate the considerably different LULC change figures in the three study
areas during two detection periods. However, Table 4 only provides the overall information
on LULC dynamic change and does not provide detailed information about LULC change
trajectories and the corresponding spatial patterns of change.

3.2.2. Analysis of LULC change trajectories at per-pixel scale

The detailed change trajectories for major LULC classes in Table 5 indicate that differ-
ent study areas in both detection periods had considerably different change trajectories
and amounts. Altamira and Santarém have much higher numbers of changed areas than
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Table 4. Statistical results of LULC types and corresponding changes at overall scale.

Area (km2) of LULC types

Altamira Santarém Lucas

LULC 1991 2000 2008 1991 1999 2010 1990 1999 2008

F 5220.6 4332.5 3619.2 9948.8 9219.6 8406.8 1045.6 837.4 652.1
S 51.4 51.5 45.1 873.4 349.5 335.7
V 996.6 1355.3 1390.1 1191.4 1555.9 2019.7 12.7 25.9 72.4
A 1037.7 1555.9 2200.5 616.8 951.4 1281.5 1677.3 2389.8 2480.6
I 43.9 62.4 74.2 60.6 90.8 117.1 25.9 37.6 99.7
W 213.6 206.3 228.5 208.8 208.4 207.4 27.6 22.4 22.2

Total 7512.4 12,077.6 3662.6

Percentage (%) of each LULC type accounting for total study area (Ai%)

Altamira Santarém Lucas

1991 2000 2008 1991 1999 2010 1990 1999 2008

F 69.49 57.67 48.18 82.37 76.34 69.61 28.55 22.86 17.8
S 0.43 0.43 0.37 23.85 9.54 9.17
V 13.27 18.04 18.5 9.86 12.88 16.72 0.35 0.71 1.98
A 13.81 20.71 29.29 5.11 7.88 10.61 45.79 65.25 67.73
I 0.58 0.83 0.99 0.5 0.75 0.97 0.71 1.03 2.72
W 2.84 2.75 3.04 1.73 1.73 1.72 0.75 0.61 0.61

Changed area in km2 (and in percentage) for each LULC type

Altamira Santarém Lucas

1991–2000 2000–2008 1991–1999 1999–2010 1990–1999 1999–2008

F −888.1(−99.2) −713.3(−100) −729.2(−99.9) −812.8(−99.1) −208.2(−28.2) −185.3(−93.0)
S 0.1(0.0) −6.4(−0.8) −523.9(−71.1) − 13.8(−6.9)
V 358.7(40.1) 34.8(4.9) 364.5(50.0) 463.8(56.5) 13.2(1.8) 46.5(23.3)
A 518.2(57.9) 644.6(90.3) 334.6(45.9) 330.1(40.2) 712.5(96.6) 90.8(45.5)
I 18.5(2.1) 11.8(1.7) 30.2(4.1) 26.3(3.2) 11.7(1.6) 62.1(31.1)
W −7.3(−0.8) 22.2(3.1) −0.4(−0.1) −1.0(−0.1) −5.2(−0.7) −0.2(−0.1)

Notes: (1) LULC types – see Table 3.
(2) Ai% of LULC type i = (area of the LULC type i/total study area) × 100.
(3) Negative values in this table indicate overall area loss of a specific LULC type, and positive values indicate
the overall area gain of a specific LULC type during the change detection period.
(4) Changed area for LULC type i = total area of type i at posterior date – total area of type i at prior date.
(5) The % of changed area for LULC type i = the total changed area for type i/total changed area for the study
area at the change detection period.

Lucas, but the percentage of total changed area or average annual percentage of changed
area in Altamira is much higher than in Santarém, as shown in Table 5, because Santarém
has a large unchanged area of primary forest (see Figure 4 and Table 4). Major LULC
change trajectories include deforestation of primary forest, dynamic change (gain or loss)
of other vegetation, and agro-pasture in Altamira and Santarém, but in Lucas, the majority
of change is the conversion of savanna to agro-pasture. The percentage of gained areas for
agro-pasture and other vegetation classes in the three study areas was much higher than
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Altamira
1991

Santarém
1991

Santarém
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Santarém
2010

Lucas
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Lucas
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2008
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Forest

Savanna/Cerrado
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Water

Altamira
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Altamira
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Figure 4. LULC maps of the three study areas derived from Landsat images.
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that of their loss areas. As shown in Table 5, deforestation in Altamira is prone to agro-
pastoral expansion and in Santarém it is prone to expansion of other vegetation type, while
in Lucas, deforestation is mainly due to agro-pasture expansion in the 1990s, but in the
2000s, expansion of other vegetation and impervious surface areas becomes another impor-
tant factor resulting in deforestation. Figure 5 illustrates the spatial distribution of LULC
change, indicating that the obvious changes in Altamira and Santarém were the conversion
of forest to agro-pasture and other vegetation and the transform between other vegeta-
tion and agro-pasture; but for Lucas, one obvious change was the conversion of savanna
to agro-pasture between 1990 and 1999 and the expansion of impervious surface areas
between 1999 and 2008. In the three study areas, impervious surface increase was mainly
at the expense of agro-pasture, although some conversion from forest and other vegetation,
especially in rural regions, was observed.

3.2.3. Analysis of LULC change at census sector scale

Based on the percentage of total changed area in a sector, we grouped census sectors into
three groups in Altamira, five groups in Santarém, and two groups in Lucas (Figure 6). The
patterns and rates of LULC changes illustrated in Figure 6 imply that the distance to the
major urban areas, road expansion, and land-use history may be related to LULC change.
For example, major deforestation in Altamira began in the early 1970s, coincident with the
construction of the Transamazon Highway (see Figure 1) (Moran 1981). In the 1980s, major
deforestation occurred close to the Altamira city and along the highway (Moran et al. 1994).
Between 1991 and 2000, the sectors away from the urban area (A2 in Figure 6) had higher
LULC change rates than in the areas close to the urban area (A1), and the sectors far away
from urban (A3) had the lowest change rate. However, the changes between agro-pasture
and other vegetation had high proportion near the urban region (see A1), slightly decreased
away from urban (see A2), and were lowest in rural regions (see A3). After entering the
2000s, the conversion of forest to other vegetation or agro-pasture was reduced, while the
conversions of other vegetation to agro-pasture increased considerably, especially close to
the urban region compared with the conversions in the 1990s.

Santarém has a much longer land-use history than the Altamira and Lucas study areas.
During the 1990s, the S2 and S1 groups close to the Santarém urban region had higher
LULC change rates than the S4 and S5 groups away from urban region, and the dynamic
change between other vegetation and agro-pasture accounted for the high proportions in
the S1 and S2 groups, while the conversion of forest and other vegetation to agro-pasture
accounted for the largest proportion in the S4 group, and the conversion of forest to agro-
pasture accounted for the large proportion in the S5 group (see Figure 6). The S3 group
had a lower LULC change rate than other groups because of the forest conservation policy
close to the Tapajos River (see Figure 1). From the early 2000s, LULC change in each
sector group had higher rates than that in the 1990s. The conversion of agro-pasture to
other vegetation accounted for a large proportion in the S1 group and some sectors in the
S2 group where the sectors are relatively close to the urban region; on the other hand, the
conversion of other vegetation to agro-pasture accounted for a large proportion in most of
the sectors in the S2 and S4 groups where the sectors are relatively away from the urban
region. In contrast, the conversion from forest to other vegetation accounted for the largest
proportion in the S5 group. The S3 group in the 2000s had high LULC change rates due to
the road expansion in the Belterra region close to the BR163 highway, resulting in higher
conversion from forest and other vegetation to agro-pasture.
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Altamira
1991–2000

Altamira
2000–2008

Santarém
1999–2010
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Savanna to other vegetation

Other vegetation to agropasture
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Imprevious surface 
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Other changes

Unchanged

Figure 5. LULC change maps at per-pixel scale for the three study areas.

Lucas has a relatively short land-use history because major deforestation had started
after the county was established in 1982. Deforestation of forest and savanna was espe-
cially high in the 1980s, and reduced rapidly in the 1990s and 2000s (Lu, Hetrick, et al.
2012), because of the restriction of available forest and savanna resources. The percentage
of changed areas for the sectors near Lucas City had higher values than the sectors away
from the city (L1 versus L2) in 1990–1999, but the inverse in 1999–2008. The propor-
tion of impervious surface areas in 1999–2008 increased much more than in 1990–1999,
especially close to the urban area (i.e. the L1 sector group).
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Figure 6. LULC change results at census sector scale for the three study areas in the Brazilian
Amazon (note: the number in this figure represents the percentage of total changed area accounting
for total area in the sector (i.e. total changed area/total area in a sector × 100)).

3.2.4. Analysis of LULC change at polygon scale

Considering the changes in patch sizes of forest class over time among the three study
areas, a common trend was that the number of polygons increased considerably but the
average size decreased rapidly (See Table 6), implying increasingly fragmented forest
landscape after deforestation. For the other vegetation class, the number of polygons
in both Altamira and Santarém increased, similar to forest, but the average size of
polygons was much smaller, implying that the other vegetation class was much more
fragmented than forest. Altamira had a relatively small average size of other vegetation
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Table 6. A comparison of average patch sizes (ha) of major LULC types.

Number of polygons Average size of polygons

Study areas LULC type 1991 2000 2008 1991 2000 2008

Altamira F 1519 2620 2900 346.1 165.9 125.0
V 4717 5309 6103 20.7 25.2 22.4
A 3314 3664 3158 30.7 42.3 69.9

Santarém 1991 1999 2010 1991 1999 2010
F 1380 1877 2292 723.6 492.9 368.6
V 3849 4589 5582 31.1 34.0 36.2
A 3475 4185 3779 16.0 21.1 32.0

Lucas 1990 1999 2008 1990 1999 2008
F 348 383 412 302.1 223.2 162.3
S 878 1082 1189 98.3 23.0 26.0
A 266 91 240 631.7 2633.6 1036.5

Notes: (1) LULC types – F, S, V, and A represent forest, savanna, other vegetation (secondary succession
vegetation and plantations), and agro-pasture (i.e. agricultural lands and pasture lands), respectively.
(2) Average size of polygons for a LULC class (unit: ha) = total area of the LULC type/number of polygons.

patch compared with Santarém; this may be because the good soil fertility in Altamira
resulted in a relatively short rotation period between the dynamic change of other veg-
etation and agro-pasture (Lu, Moran, and Mausel 2002). For agro-pasture, the number
of polygons was highest in the year 1999/2000 for both Altamira and Santarém, but the
average patch size increased gradually from 1991 to 2008/2010, implying an increase
in large-scale mechanized agriculture. In Lucas, the number of polygons in the year
1999 had the lowest number but highest average size, implying that the rapid road
expansion after 1999 had resulted in the replacement of agro-pasture. Overall, Lucas
had much larger average-sized polygons for agro-pasture than Altamira and Santarém.
This might be expected considering the large-scale mechanized agriculture found in the
county.

The analysis of changes in the number of polygons along different area ranges is help-
ful for understanding the fragmentation due to LULC change, as shown in Figure 7. When
the patch size was greater than 30 ha, the number of polygons sharply decreased, especially
in Altamira and Santarém, because deforestation, urbanization, and road expansion often
resulted in complex LULC composition. For forest, the number of polygons increased from
the early 1990s to the late 2000s, implying increased fragmentation due to deforestation.
However, it is also observed that the number of polygons in large patch size (e.g. greater
than 500 ha) increases, especially in Santarém. This is because forest, in the early 1990s,
having a huge size (thousands of hectares) with a limited number of patches, became forest
patches of relatively small size (less than a thousand hectares) due to road construction
and deforestation, as shown in Figures 4 and 5. The increased numbers of polygons for the
other vegetation class in Altamira and Santarém implied that larger patch sizes appeared
over time. The decreased number of relatively large patch sizes of savanna areas in Lucas
may imply that a limited area of savanna remained due to its conversion to agro-pasture.
Concerning agro-pasture in Altamira and Santarém, the number of polygons gradually
decreased over time when patch size was less than 30 ha, but the numbers of polygons
increased over time as patch size increased, implying increased farming sizes over time
because of the use of mechanization.
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Figure 7. Comparison of patch sizes of major LULC types among different dates at the three study
areas.

4. Discussion and summary

4.1. Improvement of LULC classification results

Development of accurate LULC classifications has been an active research topic in the past
four decades, since the first earth observation satellite was launched in the early 1970s.
Great progress in improving LULC classification has been made, including incorporation
of multiple sources of remote-sensing data (e.g. optical sensor data, radar, light detection
and ranging (lidar)) and/or ancillary data (e.g. digital elevation model (DEM), population
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density), development of advanced classification algorithms (e.g. neural network, sup-
port vector machine, random forest decision tree), and application of expert knowledge
for post-processing (Lu and Weng 2007; Lu, Batistella, et al. 2012). However, classifica-
tion is a complex procedure, the results of which may be affected by many factors such
as the characteristics of the study area, selected data sources (e.g. remote-sensing data,
ancillary data, ground truth data), classification algorithms, and the analyst’s experience
(Lu and Weng 2007). Previous research has paid much attention to the application of
multisource remote-sensing data and advanced classification algorithm, but misclassifi-
cation often occurred due to the complex biophysical environments, resulting in similar
spectral or radiometric data, and due to the constraints of spectral, spatial, and radio-
metric resolutions in remote sensing data per se. In the Brazilian Amazon, we have
extensively examined the employment of different sensor data (e.g. optical sensor data,
radar) (Li et al. 2011; Li, Lu, Moran, Dutra, et al. 2012; Lu et al. 2011) and differ-
ent classification algorithms (Li, Lu, Moran, and Sant’Anna et al. 2012; Lu, Batistella,
et al. 2012). We found that no matter what remote-sensing data or classification algo-
rithms were used, there were still some misclassifications that could not be automatically
separated from the remote-sensing data. Incorporation of human knowledge during the
classification procedure is necessary to improve LULC classification. Therefore, the
hierarchical-based method that combined automatic classification and manual editing has
been proved to be valuable to provide reliable LULC classification (Lu, Hetrick, et al.
2012).

Post-processing of the classification image has been regarded as an effective method
to further improve classification accuracy. Ancillary data, such as DEM, are often used
by relating expert knowledge of LULC distribution to topographic factors (e.g. eleva-
tion, slope, aspect) (Lu and Weng 2007). The key is to develop the expert rules that can
be used to correct the misclassification. This research provides an alternative to conduct
the post-processing by establishing some reasoning knowledge based on the multitemporal
classification results. This is especially valuable when good-quality ancillary data are not
available, such as in the Brazilian Amazon. Since a variety of sensor data with different
spatial and spectral resolutions are available, more research should be focused on the com-
bined use of the different source data or on the modelling of multiscale remote-sensing data
to improve LULC classification.

4.2. The necessity of LULC change detection at different scales

The information for detailed LULC change trajectories is often required for change detec-
tion research and is often derived using the post-classification comparison approach at
per-pixel level (Lu, Mausel, Brondizio, et al. 2004; Kennedy et al. 2009; Hansen and
Loveland 2012). Concerning the application of LULC change detection results, analysis of
LULC change at multiple scales may provide new insights for better understanding of the
spatial patterns and rates of LULC change and of the relationship between LULC change
and socioeconomic variables collected at administrative units at varying scales of analysis.

At overall scale, the change detection results provide overall LULC change trends,
but conceal the inner change trajectories and their spatial patterns, especially the dynamic
changes between other vegetation and agro-pasture in this research. For example, the gain
of agro-pasture lands can be due to the conversion from primary forest, other vegetation,
and water/wetland, while the loss of agro-pasture lands can be due to the conversion from
agro-pasture to other vegetation or to impervious surface areas. The overall-scale change
detection results cannot provide the change trajectories, but the per-pixel based change
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detection analysis overcomes this shortcoming. The per-pixel-based change detection anal-
ysis is especially valuable when information on detailed LULC change spatial patterns is
required.

Although change detection studies at census sector and polygon scales are not common
in previous research, their results indeed provide some new opportunities for analysis that
the per-pixel-based change detection results do not, such as the ability to relate the change
results to human-induced activities. In order to better manage the deforested areas, it is
necessary to understand the anthropogenic factors affecting deforestation or LULC change.
Since the anthropogenic-relevant variables, such as demographic and socioeconomic data,
are often organized and accessible at administration units (e.g. census sectors, township, or
county level), we need to examine the LULC change at the same scales corresponding to
the administration units. At polygon scale, we may better understand how human-induced
activities, such as deforestation, road construction, and urbanization, affect the fragmenta-
tion of LULC distribution. Therefore, it is desirable to implement LULC change detection
at multiple scales to better examine the LULC dynamic change in a specific study area.

4.3. A summary of research results

Through the analysis of LULC change at different scales based on three dates of Landsat
images among three study areas in the Brazilian Amazon, this research indicates the
necessity to investigate LULC change at multiple scales for better understanding of the
mechanisms of LULC change and the effective use of the LULC results in interdisciplinary
research. The major conclusions can be summarized as follows.

(1) Change detection at overall scale provides important information of overall LULC
change trends but conceals inner LULC change within the study area and their
spatial patterns.

(2) Change detection at per-pixel scale provides the detailed LULC change trajectories
and their spatial patterns. These results are often the fundamental data source for
further examining LULC change at other scales, such as different administration
units.

(3) Change analysis at the census sector scale provides valuable data sets for the anal-
ysis involving the linkage of LULC change and anthropogenic factors, such as
population density and socioeconomic conditions.

(4) Change analysis at polygon scale can provide important data sources for examin-
ing how human- and nature-induced factors affect LULC fragmentation within the
study area.
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