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a b s t r a c t

Mapping and monitoring impervious surface dynamic change in a complex urban–rural frontier with
medium or coarse spatial resolution images is a challenge due to the mixed pixel problem and the
spectral confusion between impervious surfaces and other non-vegetation land covers. This research
selected Lucas do Rio Verde County in Mato Grosso State, Brazil as a case study to improve impervious
surface estimation performance by the integrated use of Landsat and QuickBird images and to monitor
impervious surface change by analyzing the normalized multitemporal Landsat-derived fractional
impervious surfaces. This research demonstrates the importance of two-step calibrations. The first
step is to calibrate the Landsat-derived fraction impervious surface values through the established
regression model based on the QuickBird-derived impervious surface image in 2008. The second step is
to conduct the normalization between the calibrated 2008 impervious surface image with other dates
of impervious surface images. This research indicates that the per-pixel based method overestimates
the impervious surface area in the urban–rural frontier by 50%–60%. In order to accurately estimate
impervious surface area, it is necessary to map the fractional impervious surface image and further
calibrate the estimates with high spatial resolution images. Also normalization of the multitemporal
fractional impervious surface images is needed to reduce the impacts from different environmental
conditions, in order to effectively detect the impervious surface dynamic change in a complex urban–rural
frontier. The procedure developed in this paper for mapping and monitoring impervious surface area is
especially valuable in urban–rural frontiers where multitemporal Landsat images are difficult to be used
for accurately extracting impervious surface features based on traditional per-pixel based classification
methods as they cannot effectively handle the mixed pixel problem.

© 2010 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.

1. Introduction

Digital change detection in urban environments is a challenge
due to the following factors: urban land use/cover changes usually
account for a small proportion of the study area and are scattered in
different locations; they are often confounded with other changes
because of the complexity of impervious surfaces and similar
spectral features between impervious surfaces and other non-
vegetation land covers; a large number of mixed pixels often
result in poor classification accuracy due to the heterogeneous
nature of urban environments and the limitation of spatial
resolution in the remotely sensed image. Although many change
detection techniques, such as principal component analysis, image
differencing, and post-classification comparison, can be applied for
urban land use and cover change detection (Singh, 1989; Coppin

∗ Corresponding author. Tel.: +1 812 856 5320; fax: +1 812 855 3000.
E-mail address: dlu@indiana.edu (D. Lu).

and Bauer, 1996; Coppin et al., 2004; Lu et al., 2004; Kennedy
et al., 2009), the detection results are often poor, especially in
urban–rural frontiers. The majority of previous change detection
techniques are based on the comparison of spectral responses or
classified images at the per-pixel scale. However, per-pixel based
methods are problematic in accurately mapping and monitoring
urban land use/cover change ifmediumor coarse spatial resolution
images are used (Seto and Liu, 2003; Lu and Weng, 2004). Recent
research has indicated that the subpixel-based impervious surface
data sets have the potential to detect urban expansion (Yang et al.,
2003a; Xian and Crane, 2005; Xian, 2007; Xian et al., 2008).

Urban landscapes can be regarded as a complex combination
of buildings, roads, grass, trees, soil, water, and so on. In coarse
and medium spatial resolution images such as Landsat Thematic
Mapper (TM), mixed pixels have been recognized as a problem
in the effective use of remotely sensed data in land use/cover
classification and change detection (Fisher, 1997; Cracknell, 1998;
Lu and Weng, 2004). As shown in Fig. 1, mixed pixels are common
in TM imagery, but this problem almost does not exist in the
QuickBird image (0.6 m spatial resolution here). Building shapes,

0924-2716/$ – see front matter© 2010 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
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Fig. 1. A comparison of color composites between Landsat TM and QuickBird images (2008), illustrating the mixed pixel problem in relatively coarse spatial resolution
images.

roads, and the boundaries between different land covers can be
clearly identified on theQuickBird image, but these features cannot
be detected in the Landsat TM color composite because of its
relatively coarse spatial resolution (i.e., 30 m). This demonstrates
the difficulty in urban land use/cover classification or change
detection with Landsat TM images. If traditional per-pixel based
methods such as the maximum likelihood classifier are used
for urban land use/cover classification, urban areas may be
significantly overestimated, but rural areas may be significantly
underestimated (Lu and Weng, 2004). This situation worsens
if multitemporal remote sensing data are used for urban land
use/cover change detection, especially in the urban–rural frontiers.
It is imperative to develop some new methods that can be used
effectively to detect the dynamic change of urban land use/cover
at the subpixel level with limited or no training samples for the
historical remote sensing data.

Impervious surfaces are generally defined as any anthropogenic
materials that water cannot infiltrate and are primarily associated
with human activities and habitation through construction of
transportation and buildings (Slonecker et al., 2001). Research
on impervious surface extraction from remotely sensed data has
attracted interest since the 1970s (Slonecker et al., 2001; Brabec
et al., 2002; Weng, 2007). Many methods have been developed
for mapping impervious surfaces with different spatial resolution
images from high spatial resolution such as IKONOS and QuickBird
(Mohapatra and Wu, 2008; Lu and Weng, 2009; Wu, 2009),
medium spatial resolution such as Landsat TM and Terra ASTER
(Deguchi and Sugio, 1994; Slonecker et al., 2001; Hodgson et al.,
2003;Wu andMurray, 2003; Yang et al., 2003a,b; Dougherty et al.,
2004; Jennings et al., 2004; Wu, 2004; Xian and Crane, 2005; Lu
and Weng, 2006a,b; Powell et al., 2008; Wang et al., 2008; Weng
et al., 2008; Esch et al., 2009; Hu and Weng, 2009; Weng et al.,
2009) and coarse resolution such as DMSP-OLS (Elvidge et al.,
2007; Sutton et al., 2009). The main methods include per-pixel
image classification (Hodgson et al., 2003; Dougherty et al., 2004;
Jennings et al., 2004), subpixel classification (Ji and Jensen, 1999;
Phinn et al., 2002; Rashed et al., 2003), neural network (Mohapatra

and Wu, 2008; Wang et al., 2008; Hu and Weng, 2009; Wu, 2009),
regression tree model (Yang et al., 2003a,b; Xian and Crane, 2005;
Xian, 2008; Xian et al., 2008; Yang et al., 2009), the combination
of high-albedo and low-albedo fraction images (Wu and Murray,
2003; Wu, 2004; Lu and Weng, 2006a,b; Weng et al., 2009), and
through the established relationship between impervious surfaces
and vegetation cover (Gillies et al., 2003; Bauer et al., 2008).
However, impervious surface areas are often overestimated or
underestimated when medium spatial resolution images are used,
depending on the relative proportion of impervious surfaces in a
pixel (Wu andMurray, 2003; Lu andWeng, 2006a; Greenfield et al.,
2009).

Ridd (1995) assumed that land-cover in urban environments is
a linear combination of three components: vegetation, impervious
surface, and soil (V–I–S). The V–I–S model provides a guideline for
decomposing urban landscapes and a link for these components
to remote-sensing spectral characteristics. Several studies have
adopted this model as a basis for understanding the urban
environment (Madhavan et al., 2001; Rashed et al., 2001; Phinn
et al., 2002). Because of the complexity of impervious surfaces in
remote sensing spectral signatures and themixed pixel problem in
medium or coarse spatial resolution images (see Fig. 1), subpixel
based methods have obtained increasing attention in recent years
(Wu and Murray, 2003; Wu, 2004; Lu and Weng, 2006a,b; Weng
et al., 2009). These methods are especially valuable for accurately
extracting impervious surfaces in the urban–rural landscapes.

Although previous research has explored methods for examin-
ing urban expansion based on impervious surface dynamic change
(Yang et al., 2003a; Xian, 2007; Powell et al., 2008; Xian et al.,
2008), detection of the impervious surface change in a complex ur-
ban–rural frontier withmedium spatial resolution images remains
a challenge. Because increase in impervious surface occurs mainly
in the urban–rural frontiers over disperse locations, it is imperative
to develop a processing method that can rapidly monitor the im-
pervious surface change in a large area. Therefore, the objectives of
this research are (1) to develop a new method to improve imper-
vious surface estimation through the integrated use of Landsat TM
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Fig. 2. Study area — Município de Lucas do Rio Verde, Mato Grosso State, Brazil.

Table 1
Landsat and QuickBird images used in research.

Sensor
data

Acquisition date Spectral and spatial resolutions

MSS July 8 and 9, 1977 Four visible and near infrared bands with 80 m spatial resolution

TM

June 21, 1984

Three visible bands (blue, green, and red), one near infrared (NIR) band, and two shortwave infrared (SWIR) bands with 30 m
spatial resolution

August 9, 1990
June 6, 1996
September 17, 2002
July 17, 2005
June 21, 2007
May 22, 2008

ETM August 10, 1999 The same as TM, but including one panchromatic band with 15 m spatial resolution

QuickBird April 2, 2007 Three visible bands (blue, green, and red) and one near infrared (NIR) band with 2.4 m, and one panchromatic band with 0.6 m
spatial resolutionJune 20, 2008

andQuickBird images and (2) to examine urban expansion through
the analysis of normalized multitemporal impervious surface im-
ages.

2. Study area and data sets

2.1. Description of the study area

Lucas do Rio Verde (hereafter called simply Lucas) in Mato
Grosso State, Brazil has a small urban extent with a relatively
short history, covering a proximate area of 3660 km2 with flat
terrain (see Fig. 2). It was established in the early 1980s and
has experienced a rapid urbanization since then. The study area
includes both an urban area, defined in Brazil as a county seat
with a population size of approximately 29,000 and rural areas
distant from any urban places where the primary activities are
agricultural and pastoral activity. The region is connected to
Santarém, a river port in the Amazon, and to the heart of the
soybean growing area at Cuiabá by the BR-163 highway which
runs through the município and its county seat. The economic
base of Lucas is large-scale agriculture, including the production
of soy, cotton, rice, and corn as well as poultry and swine. The
county is at the epicenter of soybean production in Brazil, and it
is expected to grow in population three-fold in the next ten years
(personal communication with secretariat for planning at Lucas).
Annual precipitation is around 2032–2286 mm, mainly starting
in September to ending in April. The dry season is between May

and August. Themajor vegetation includes primary forest, cerrado,
and limited areas of plantation and regenerating vegetation.
Deforestation was begun in the late 1970s with the construction
of the BR-163 highway, especially after the establishment of Lucas
County. According to the census data, the population in Lucas
was 4332 in 1991, increased to 16,145 in 2000 and to 28,017
in 2007 (http://www.citypopulation.de/Brazil-MatoGrosso.html).
Because it is, at present, a relatively small town yet has complex
urban–rural spatial patterns derived from its highly capitalized
agricultural base, large silos and warehouses, and planned urban
growth, Lucas is an ideal site for exploring the approaches to map
and monitor the impervious surface dynamic change.

2.2. Data sets used in research

Landsat images from 1977 to 2008 and QuickBird images
acquired in 2007 and 2008 were used in this research (see
Table 1). The quality of time series Landsat imageswas first visually
examined in order to find cloud-free images and those with
minimal system-induced errors such as stripping or bad pixels.
For all selected Landsat images, radiometric and atmospheric
calibration was conducted with the image-based dark-object
subtraction method (Lu et al., 2002; Chander et al., 2009). All
images were geometrically registered into a UTM (zone 21,
south) projection with geometric errors of less than one pixel,
so that all images have the same coordinate system. The nearest
neighbor resampling technique was used to resample the Landsat
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Fig. 3. Strategy of integrating Landsat TM and QuickBird images for mapping impervious surfaces and of monitoring imperious surface dynamic change.

images into a pixel size of 30 m by 30 m during image-to-image
registration.

3. Methods

One critical step in this research is to map impervious surface
data sets, which is difficult in a complex urban–rural fron-
tier based on Landsat images. In order to improve impervi-
ous surface mapping performance, QuickBird imagery is used to
calibrate the Landsat-derived impervious surface image. The strat-
egy of mapping and monitoring impervious surface change is
illustrated in Fig. 3. The major steps include (1) mapping imper-
vious surfaces with a hybrid method based on QuickBird imagery;
(2) extracting per-pixel impervious surface images from Landsat
images based on the thresholding of maximum and minimum
filtering images and unsupervised classification; (3) mapping frac-
tional images of high-albedo, low-albedo, vegetation, and soil
endmemberswith the linear spectralmixture analysis; (4) produc-
ing fractional impervious surface images by adding high-albedo
and low-albedo fraction images while removing non-impervious
surface pixels by combining the per-pixel impervious surface im-
ages from step 2; (5) establishing a regression model to cali-
brate the 2008 Landsat-derived impervious surfaces using the
2008 QuickBird-derived impervious surface imagery; (6) normal-
izing multitemporal Landsat-derived impervious surface images;
(7) evaluating impervious surface estimates with the 2007
QuickBird-derived impervious surface imagery; and finally (8) ex-
amining impervious surface dynamic change. The following sub-
sections provided detailed descriptions for these steps.

3.1. Mapping impervious surfaces with QuickBird imagery

The QuickBird images were used to develop impervious
surface images at a local scale, and the developed impervious
surface images were used for establishing a calibration model
for modifying the Landsat-derived impervious surface image and
for evaluating the results independently. QuickBird imagery has
four multispectral bands with 2.4 m spatial resolution and one
panchromatic band with 0.6 m spatial resolution. In order to make
full use of both the multispectral and panchromatic images, the
wavelet merging technique (Lu et al., 2008) was used to merge the
QuickBird multispectral bands and panchromatic band into a new
multispectral imagewith 0.6m spatial resolution. A hybridmethod
which consisted of thresholding, unsupervised classification, and

manual editing was used to produce the impervious surface image
from the fused QuickBird imagery (Lu et al., 2010).

In general, vegetation has significantly different spectral
features compared to impervious surfaces in the normalized
difference vegetation index (NDVI) image. Clear and deep water
bodies have much lower spectral values than impervious surfaces
in the near infrared (NIR) wavelength image. Therefore, the
vegetation and water pixels can be masked out with selected
thresholds on NDVI and NIR images. Themajor steps for the hybrid
approach included: (1) producing the NDVI image from QuickBird
red and NIR images and then masking vegetation out with the
selected threshold on theNDVI image; andmaskingwater outwith
the selected thresholds on the NIR image; (2) extracting spectral
signatures of the non-vegetation pixels; using an unsupervised
classification algorithm to classify the extracted spectral signatures
into 50 clusters and then merging the clusters into impervious
surfaces and other classes; (3) manually editing the extracted
impervious surface image to eliminate the non-impervious surface
pixels such as bare soils, shadows, and wetlands which are
confused with the impervious surface class due to similar spectral
features (Lu et al., 2010).

Although unsupervised classification can separate most imper-
vious surfaces from bare soils and wetlands, some confusion still
remains between bare soil and bright impervious surfaces, and
among dark impervious surfaces, shadowed impervious surfaces,
wetlands or shadows from tree crowns. Therefore, visually exam-
ining the extracted impervious surface image is necessary to fur-
ther refine the impervious surface image quality by eliminating the
confused pixels, e.g., bare soils, non-impervious surface shadows,
and wetlands. These impervious surface images with spatial res-
olution of 0.6 m were resampled to 30 m to generate fractional
impervious surface images for use as reference data. This method
was used to map impervious surface distribution for the 2007 and
2008 QuickBird images. The accuracy assessment based on 450
randomly selected sample plots indicated that overall accuracy of
98% for both 2007 and 2008 QuickBird images was achieved, based
on visual interpretation on the QuickBird color composite.

3.2. Developing per-pixel based impervious surfaces from Landsat
images

Per-pixel impervious surface mapping is often based on the
image classification of spectral signatures (Shaban and Dikshit,
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2001; Hodgson et al., 2003; Dougherty et al., 2004; Jennings
et al., 2004), but medium or coarse spatial resolution images
often generate relatively poor results, especially in a complex
urban–rural frontier, because of the spectral confusion between
impervious surfaces and other land covers and the mixed pixel
problems (Wu and Murray, 2003; Lu and Weng, 2006a,b).
This research for mapping per-pixel impervious surfaces was
based on the combination of filtering images and unsupervised
classification of Landsat spectral signatures. The fact that the
red-band images in Landsat TM/ETM+/MSS have high spectral
values for impervious surfaces but have low spectral values for
vegetation and water/wetland provides a potential to rapidly map
impervious surface areas. The minimum and maximum filter with
awindow size of 3×3 pixels was separately applied to the Landsat
red band image. The image differencing between maximum and
minimum filtering images was used to highlight linear features
(mainly roads) and other impervious surfaces. Examining the
differencing image indicated that a threshold of 13 (the value from
the differencing image) can be used to extract the impervious
surface image. The spectral signature of the initial impervious
surface image was then extracted and was further classified into
60 clusters using an unsupervised classification method, to refine
the impervious surface image by removing the pixels with non-
impervious surfaces. Finally, manual editing of the impervious
surface image was conducted to make sure that all impervious
surfaces, especially in urban regions, were extracted. The same
procedure was applied to all selected Landsat images to generate
the per-pixel based time series impervious surface data sets.

3.3. Developing fractional images with linear spectral mixture
analysis

As per-pixel methods based on medium or coarse spatial res-
olution often overestimate or underestimate impervious surface
areas, it is important to estimate fractional impervious surface im-
ages in order to improve area estimation. Of the manymethods for
mapping impervious surfaces (Slonecker et al., 2001; Brabec et al.,
2002), the linear spectral mixture analysis (LSMA)-based method
has proven valuable for extracting fractional impervious surfaces
from Landsat images (Wu andMurray, 2003; Lu andWeng, 2006a).
LSMA is regarded as a physically based image processing tool. It
supports repeatable and accurate extraction of quantitative sub-
pixel information (Smith et al., 1990). The LSMA approach assumes
that the spectrummeasured by a sensor is a linear combination of
the spectra of all components (endmembers) within the pixel and
that the spectral proportions of the endmembers reflect propor-
tions of the area covered by distinct features on the ground (Adams
et al., 1995). A detailed description of LSMA is found in previous lit-
erature (e.g. Smith et al., 1990; Lu and Weng, 2004).

From the view of remotely sensed data, the urban landscape
can be assumed a combination of four components: high-
albedo objects, low-albedo objects, vegetation, and soil (Lu and
Weng, 2004, 2006a). Previous research has indicated that the
fraction images which are developed with LSMA have physical
meaning (Wu and Murray, 2003; Lu and Weng, 2006a). The high-
albedo fraction image highlights land covers with high spectral
reflectance, such as bright impervious surfaces and dry bare soils;
and the low-albedo fraction image highlights the land covers with
low spectral reflectance, such as dark impervious surfaces, forested
shade, water and wetlands. The soil fraction image highlights soil
information, mainly located in agriculture and pasture lands and
the vegetation fraction image highlights the forest and plantation
information. Impervious surfaces aremainly concentrated in high-
albedo and low-albedo fraction images (Lu and Weng, 2006a,b).

In the LSMA approach, the selection of suitable endmembers is
a key to successfully extracting fractional images. The minimum

noise fraction transform (MNF) is often used to convert Landsat
images into a new data set to support the selection of high quality
endmembers. Four endmembers: vegetation, low-albedo, high-
albedo, and soil, were identified from theMNF components (Lu and
Weng, 2006a). A constrained least squares solution was then used
to unmix the Landsat TM/ETM image into four fractional images
and one error image. Because MSS has only four bands and the
study area had very limited impervious surfaces in 1977, three
endmembers (i.e., high-albedo, low-albedo and vegetation) were
used.

3.4. Developing fractional impervious surface images through the
combination of fractional images and per-pixel impervious surface
images

One critical step in mapping impervious surfaces is the
removal of impervious surface free pixels. By combining per-pixel
impervious surfaces with high-albedo and low-albedo fraction
images, a fractional impervious surface image was generated with
the following rules: if the pixel is an impervious surface in the per-
pixel based impervious surface image, then that pixel is extracted
from the sum of high-albedo and low-albedo fraction images;
otherwise, zero is assigned to the pixel. This procedure was used
separately to map fractional imperious surface images from the
multitemporal Landsat images.

3.5. Refining impervious surface areas by the integrated use of
Landsat- and QuickBird-derived impervious surface images

Previous research has indicated that impervious surface areas
developed from Landsat TM images are often overestimated
or underestimated, depending on the proportion of impervious
surfaces in a pixel (Wu and Murray, 2003; Lu and Weng, 2006a).
One method which can be used to calibrate this bias is to
develop a regressionmodel to calibrate the TM-derived impervious
surface images. In this research, the overlap area between the
2008 QuickBird-derived and the corresponding Landsat-derived
impervious surface images were selected and used for sample
collection based on the selection of one pixel for every five
on the overlapped images. Because many pixels were non-
impervious surfaces, they had zero values. After removal of all
samples with zero values, 1512 samples were used to develop
the calibration model. A scatterplot-based method was used to
examine the relationship between both the 2008 Landsat-derived
and QuickBird-derived impervious surface images. A regression
model was developed to conduct the calibration.

3.6. Refining the multitemporal impervious surface images by image-
to-image normalization

The mapping of impervious surface areas from time series
remote sensing images can often be affected by different
environmental conditions, such as soil moisture, atmospheric
conditions, and vegetation phenology (Wu and Yuan, 2008; Hu and
Weng, 2009). It is therefore necessary to calibrate the bias caused
by these different conditions. It can be assumed that the same
invariant locations in different dates of Landsat images should
have the same fraction impervious surface areas in a pixel. Thus, a
calibration model can be developed to calibrate the multitemporal
impervious surface images. All the Landsat-derived fractional
impervious surface images were stacked into one file. Pseudo-
invariant objects, i.e., unchanged impervious surface objects from
the time series fractional impervious surface imageswere selected.
A total of 24 sample points were selected along the major
highway and urban areas, with the assumption that the unchanged
impervious surfaces have the same fraction value in a pixel.
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A regression model corresponding to each pair of images was
developed based on the relationship between the reference data
from the calibrated 2008 fractional impervious surface image and
subject images from other dates of Landsat-derived fractional
impervious surface images. The regression models were then used
to calibrate the extracted impervious surface images in order to
reduce the impervious surface estimation bias caused by external
factors such as different vegetation phenology and atmospheric
conditions.

3.7. Evaluating the extracted fractional impervious surface images

Evaluation of impervious surface estimates can be challenging
due to the difficulty in obtaining reference data, especially
for historical data sets. High spatial resolution images such
as aerial photographs and QuickBird images are often used to
collect reference data. In this research, a 2007 QuickBird-derived
impervious surface image was used to evaluate the 2007 Landsat
TM-derived fractional impervious surface image after image
normalization. The impervious surface image developed from the
2007QuickBird imagewith 0.6m spatial resolutionwas resampled
to 30 m to produce a fractional impervious surface image. In order
to reduce the geometric error between the QuickBird- and TM-
derived impervious surface images, a window size of 3 × 3 pixels
was used to select samples, based on the overlap area on both 2007
QuickBird- and TM-derived impervious surface images. Scatterplot
analysis, correlation analysis, and root mean square error (RMSE)
were used to examine the quality of the TM-derived fractional
impervious surface image.

3.8. Examining the impervious surface dynamic change

In the urban–rural frontier, impervious surface increase is
mainly due to the construction of individual buildings and roads.
Because the areas of these objects are often smaller than the
pixel size of Landsat images, geometric accuracies between the
multitemporal images become critical for successful detection
of impervious surface change. In this study area, due to the
geometric errors between multitemporal Landsat images (less
than one pixel) and small width of roads (usually smaller than
the pixel size of the Landsat TM/ETM images), it is hard to
spatially examine the impervious surface change with the pixel-
by-pixel comparison of multitemporal impervious surface images.
Therefore, a total impervious surface area for each date was
calculated. The scatterplots showing relationships between total
impervious surface areas and dateswere developed to examine the
impervious surface change trends.

4. Results and discussions

4.1. Calibration of the Landsat-derived fractional impervious surfaces
with the QuickBird-derived impervious surface image

In theory, if the impervious surfaces are accurately estimated
from both TM and QuickBird images, the scatterplot between both
variables should show a very good linear relationship. As shown
in Fig. 4, the impervious surface image developed in this research
demonstrates a reasonably good result, although overestimation
occurred when the impervious surfaces accounted for a relatively
small proportion in a pixel andunderestimation occurredwhen the
impervious surfaces accounted for a large proportion in a pixel.
This trend is similar to other previous research (Wu and Murray,
2003; Lu and Weng, 2006a,b; Greenfield et al., 2009). Overall, a
good linear relationship exists between the fractional impervious
surface images developed independently from 2008 Landsat TM
and QuickBird images. Based on the samples from QuickBird- and

Fig. 4. Relationship of impervious surface values from Landsat TM and QuickBird
images.

Fig. 5. Relationship of the impervious surface values fromdifferent dates of Landsat
images.

Landsat-derived impervious surface images, a linear regression
model is established as follows:

y = 1.0674x − 0.0119, (1)

where x is the fractional impervious surface values from 2008
Landsat TM image, and y is the calibrated fraction impervious
surface values from the QuickBird image. The coefficient of
determination (R2) is 0.45 for this regression model. This equation
was used to calibrate the entire 2008 Landsat TM-derived
fractional impervious surface image.

4.2. Normalization of the multitemporal Landsat-derived impervious
surface images

Image-to-image normalization is valuable in reducing the im-
pacts caused by different environmental conditions on the im-
pervious surface estimation performance based on multitemporal
remotely sensed data (Wu and Yuan, 2008; Hu and Weng, 2009).
As an example, Fig. 5 demonstrates a very good linear relationship
between the calibrated 2008 TM-derived impervious surface im-
age and 2005 TM-derived impervious surface image. Similar re-
lationships exist for other dates of impervious surface images, as
summarized in Table 2. In this research, the 2008 calibrated imper-
vious surface imagewas used as a reference image, and other dates
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Table 2
Regression equations for the normalization of the multitemporal Landsat-derived
fractional impervious surface images.

Year Regression equation R2

2007 y = 0.8148x + 0.1552 0.70
2005 y = 0.7789x + 0.0468 0.65
2002 y = 0.5354x + 0.2473 0.62
1999 y = 0.6305x + 0.2061 0.65
1996 y = 0.7093x + 0.1862 0.61
1990 y = 0.6688x + 0.1535 0.60
1984 y = 0.6253x + 0.0952 0.76
1977 y = 0.5353x + 0.0991 0.47

Note: y is the calibrated fractional impervious surface, and x is the fractional
impervious surface before calibration.

of Landsat-derived impervious surface images were used as sub-
ject images respectively. The R2 values for all Landsat-derived im-
pervious surface images were greater than 0.6, except for the MSS
image. The good linear relationships indicate that linear regres-
sion models can be used to calibrate fractional impervious surface
images, thus, improving the performance of impervious surface
estimation.

The relatively small R2 value for the regression model based
on the MSS in 1977 may be caused by the following problems:
the coarse spatial and spectral resolutions in MSS (80 m, 4 bands)
compared with TM/ETM (30 m, 6 bands) make it difficult to
accurately map subpixel impervious surfaces based on spectral
mixture analysis; the very limited impervious surface areas in 1977
make it difficult in collecting sufficient sample plots for image-to-
image normalization, and the geometric correction errors between
MSS and other TM images produce location errors during the
sample data collection. Another problem is that the assumption
of the same invariant locations between 1977 and 2008 may be
not true due to the rapid land use/cover change and the different
spatial resolution between MSS and TM images.

4.3. Evaluation of the 2007 Landsat-derived impervious surface image
with the 2007 QuickBird-derived impervious surface image

A good agreement between the TM-derived impervious surface
result and corresponding 2007 QuickBird-derived result was
obtained (Fig. 6). The correlation coefficient between them is 0.89
with a RMSE of 0.128. This error is acceptable for such a complex
urban–rural frontier. The high correlation coefficient and relatively
low RMSE indicate that the 2007 TM-derived impervious surface
image is reliable, and also implies that the method developed in
this research for estimating fractional impervious surface areas is
feasible.

4.4. Analysis of dynamic change in impervious surfaces

The impervious surface expansion from 1977 to 2008 is easily
perceived. As part of the study area illustrated in Fig. 7, the
spatial distribution of the impervious surface areas expanded
rapidly, mainly taking place as urban extent and roads expanded.
Overall, impervious surface areas increased at an exponential
rate, as shown in Fig. 8, especially the expansion rate was
increased after the year 2000. Comparing the increasing rates
between per-pixel based impervious surface areas and the
fractional impervious surface areas, the impervious surface change
trends are similar. However, per-pixel based impervious surface
areas can be overestimated by 50%–60% when compared with
fractional impervious surface areas, indicating the importance
of subpixel based estimation method in the urban–rural areas
where impervious surface areas account for very small proportion
in the study area. The results illustrated in Fig. 8 demonstrate

Fig. 6. Accuracy assessment based on QuickBird image in 2007.

importance of the two-step calibration method in improving
impervious surface area estimation, especially in urban–rural
frontiers, without implementing image classification for historical
Landsat images, which are often difficult due to lack of training
sample data.

5. Summary

Complex impervious surfaces in the urban landscape andmixed
pixels in medium and coarse spatial resolution images make map-
ping and monitoring of impervious surface change a challenge.
Traditional per-pixel based image classification methods cannot
effectively handle the mixed pixel problem and subpixel based
methods cannot effectively separate the pixels of impervious sur-
faces from other land covers, thus, underestimation or overes-
timation of impervious surface areas are common, depending
on the proportion of impervious surface in a pixel. The method
developed in this paper, which is based on a combination of per-
pixel based impervious surface mapping with filtering and un-
supervised classification and subpixel based method with LSMA,
can effectively map impervious surface distribution with Land-
sat images. The calibration with QuickBird-derived results can
further reduce the bias caused by mixed pixel problems and im-
prove impervious surface mapping performance. The normaliza-
tion of multitemporal impervious surface images can reduce the
bias caused by different environmental conditions in the multi-
temporal Landsat images, and thus improve the quality of time
series impervious surface data sets. Therefore, the use of mul-
titemporal fractional impervious surface images provides a new
method for the examination of urban expansion, especially in a
complex urban–rural frontier where impervious surfaces only ac-
count for a small proportion of the study area. One advantage of
the method is that the impervious surface area estimation can be
considerably improved when compared with per-pixel based re-
sults. Another advantage is that the change detection in a complex
urban–rural frontier becomes feasible by the use of multitempo-
ral impervious surface images without the use of training sam-
ples for historical remote sensing data, which is often difficult to
acquire.
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Fig. 7. Impervious surface change from 1977 to 2008, illustrating part of the study area in the município of Lucas, Mato Grosso, Brazil (for the sake of clear display of
impervious surface change, per-pixel based impervious surface images were used in this figure).

Fig. 8. The impervious surface dynamic change trends between 1977 and 2008.
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