
ACT Publication No. 11-04 

 

 

 

 

 
                                                                                  
 

 
Mapping Impervious 

Surface Distribution 

with the Integration 

of Landsat TM and 

QuickBird Images in a 

Complex Urban–Rural 

Frontier in Brazil 
 

 

 

Dengsheng Lu, Emilio Moran, 

Scott Hetrick, and Guiying Li 
 
 
 

In: Advances of Environmental Remote Sensing to Monitor Global Changes. Ni-Bin 
Chang (ed.), CRC Press/Taylor and Francis, pp. 277-296. 

 
 

_______________________________________________________________________________________ 

Anthropological Center for Training and Research on Global Environmental Change  
Indiana University, Student Building 331, 701 E. Kirkwood Ave., 47405-7100, U.S.A.   

Phone: (812) 855-6181, Fax: (812) 855-3000, Email: act@indiana.edu, internet: www.indiana.edu/~act 

http://www.indiana.edu/


277

13 Mapping Impervious 
Surface Distribution 
with the Integration 
of Landsat TM and 
QuickBird Images in a 
Complex Urban–Rural 
Frontier in Brazil

Dengsheng Lu, Emilio Moran, 
Scott Hetrick, and Guiying Li

Contents

13.1	 Introduction................................................................................................... 278
13.2	 Background.................................................................................................... 278
13.3	 Research Problems and Objectives................................................................ 282
13.4	 Description of the Study Area....................................................................... 282
13.5	 Methodology.................................................................................................. 283

13.5.1	 Image Preprocessing..........................................................................284
13.5.2	 Mapping ISA with QuickBird Imagery.............................................284
13.5.3	 Developing Per-Pixel Based ISA from Landsat Images....................285
13.5.4	 Mapping Fractional ISA Distribution................................................286
13.5.5	 Refining ISA by Integrated Use of Landsat- and QuickBird-

derived ISA Images...........................................................................287
13.6	 Results and Discussion..................................................................................288

13.6.1	 ISA Mapping with QuickBird Imagery.............................................288
13.6.2	 Evaluation of Per-Pixel ISA Image from Landsat TM Imagery........288
13.6.3	 Development of Fractional ISA Image from Landsat TM Imagery....... 289
13.6.4	 Calibration of the Landsat-Derived Fractional ISA with the 

QuickBird-Derived ISA Image..........................................................290
13.7	 Conclusions....................................................................................................292
Acknowledgment....................................................................................................292
References............................................................................................................... 293

K13587_C013.indd   277 10/12/2011   6:17:00 PM



278 Environmental Remote Sensing and Systems Analysis

13.1  Introduction

Impervious surfaces are generally defined as any man-made materials that water 
cannot infiltrate. They are primarily associated with human activities and habitation 
through the construction of transportation infrastructure and buildings (Slonecker et 
al. 2001; Bauer et al. 2008). Impervious surface area (ISA) has long been recognized 
as an important factor in many urban or environment related studies, including the 
improvement of urban land use and land cover (LULC) classification (Madhavan 
et al. 2001; Phinn et al. 2002; Lu and Weng 2006a), residential population estima-
tion (Wu and Murray 2005; Lu et al. 2006), urban land use planning (Harbor 1994; 
Brabec et al. 2002), and urban environmental assessment, especially water quality 
(Schueler 1994; Arnold and Gibbons 1996; Zug et al. 1999; Brabec et al. 2002) and 
rainfall runoff (Lohani et al. 2002). Therefore, the timely and accurately mapping 
ISA distribution is of importance. The unique characteristics of remote sensing data 
in repetitive data acquisition, its synoptic view, and digital format suitable for com-
puter processing make it the primary data source for ISA mapping. The research 
for extracting ISA from remotely sensed data has attracted great attention since 
the 1970s, especially in the most recent decade (Phinn et al. 2002; Gillies et al. 
2003; Wu and Murray 2003; Yang et al. 2003a; Lu and Weng 2006a; Bauer et al. 
2008; Mohapatra and Wu 2008; Wang et al. 2008; Xian et al. 2008; Hu and Weng 
2009; Wu 2009; Weng et al., 2009; Yang et al. 2010). Since many new techniques 
for ISA mapping have been developed in recent decades, it is necessary to overview 
recent progress in order to provide guidelines for selecting a suitable technique for a 
specific study. This chapter briefly summarizes the major ISA mapping techniques 
that have appeared in recent literature and then provides a case study of ISA mapping 
with the integrated use of Landsat Thematic Mapper (TM) and QuickBird images in 
a complex urban–rural frontier in Brazil.

13.2  Background

Urban landscapes can be regarded as a complex combination of buildings, roads, 
grass, trees, soil, water, and so on. In high spatial resolution images such as QuickBird 
and IKONOS, individual objects such as buildings and roads can be clearly identified; 
however, these features are less distinct in Landsat TM color composites because of 
Landsat’s relatively coarse spatial resolution (i.e., 30 m; see Figure 13.1). Different 
construction materials often result in high spectral variation, that is, different ISA 
appears complex colors in QuickBird image, making it difficult to automatically 
map ISA distribution based on spectral signatures. In coarse and medium spatial 
resolution images such as Landsat TM, mixed pixels can be a serious problem, 
diminishing the effective use of remotely sensed data in urban LULC classification 
and change detection. If per-pixel based methods are used for mapping urban LULC 
distribution based on medium or coarse spatial resolution images, large uncertainty 
may be introduced into the result, that is, urban ISA extent could be significantly 
overestimated, and ISA in rural areas could be significantly underestimated (Lu and 
Weng 2004). This situation worsens if multitemporal remote sensing data are used 
for urban LULC change detection, especially in the urban–rural frontiers.

“appears as 
complex colors” 
meant?
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279Mapping Impervious Surface Distribution

In urban environments, land covers are assumed to be a linear combination of 
three components: vegetation, ISA, and soil (V-I-S) (Ridd 1995). The V-I-S model 
provides a guideline for decomposing urban landscapes and a link for these com-
ponents to remote sensing spectral characteristics. Several studies have adopted 
this model as a basis for understanding the urban environment (Ward et al. 2000; 
Madhavan et al. 2001; Rashed et al. 2001; Phinn et al. 2002). From the view of 
remote sensing data, shade is also an important part affecting the spectral signature. 
Therefore, shade, green vegetation, soil, and ISA can almost explain all land covers 
in urban landscape (Lu and Weng 2004). In practice, ISA has high spectral variation; 
for example, bright building roofs may have very high spectral signatures that are 
confused with soils; dark roads and building roofs have very low spectral signatures 
that are often confused with shadow, water, and wetland (see Figure 13.1). Thus, 
direct extraction of ISA from remotely sensed data becomes very difficult because of 
the spectral confusion between ISA and other land covers. We can assume that urban 
landscape is composed of four components: high-albedo land covers, low-albedo 
land covers, vegetation, and soil. All land covers are a composition of these four 
components with linear or nonlinear relationship. Previous research has indicated 
that these four fraction images can be developed with spectral mixture analysis (Wu 
and Murray 2003; Lu and Weng 2006a,b). High-albedo fraction image highlights the 
land covers with high spectral reflectance, such as bright ISA and dry bare soils; low-
albedo fraction image highlights the land cover with low spectral reflectance, such as 
dark ISA, shadow, water, and wetland. Soil fraction image highlights soil informa-
tion, mainly located in agricultural lands; vegetation fraction image highlights the 

OK to match with 
sentence below?
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Figure 13.1  Comparison of color composites between QuickBird (left) and TM images 
(right), illustrating the mixed pixel problem in relatively coarse spatial resolution image.
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280 Environmental Remote Sensing and Systems Analysis

forest and plantation information. ISA is mainly concentrated on the high- and low-
albedo fraction images; thus, ISA can be extracted from the addition of high- and 
low-albedo fraction images (Wu and Murray 2003; Lu and Weng 2006a,b). 

Since the 1970s, many approaches for ISA mapping have been developed. Based on 
the achievements in the 1970s and 1980s, Slonecker et al. (2001) reviewed many of the 
approaches for ISA extraction from remotely sensed data and grouped them into three 
basic categories: interpretive applications, spectral applications, and modeling applica-
tions. Brabec et al. (2002) summarized four ways for ISA mapping: (1) using a planim-
eter to measure ISA on aerial photography, (2) counting the number of intersections 
on the overlain grid on an aerial photography, (3) conducting image classification, and 
(4) estimating ISA through the percentage of urbanization in a region. Recently, more 
advanced algorithms have been developed for quantitative extraction of ISA from satel-
lite imagery. The major methods include per-pixel image classification (Lu and Weng 
2009), subpixel classification (Ji and Jensen 1999; Phinn et al. 2002; Rashed et al. 2003), 
neural network (Mohapatra and Wu 2008; Wang et al. 2008; Hu and Weng 2009; Wu 
2009), regression tree model (Yang et al. 2003a,b; Xian and Crane 2005; Xian 2008; 
Xian et al. 2008; Yang et al. 2009), the combination of high-albedo and low-albedo 
fraction images (Wu and Murray 2003; Wu 2004; Lu and Weng 2006a,b; Weng et al. 
2008, 2009), and through the established relationship between ISA and vegetation cover 
(Gillies et al. 2003; Bauer et al. 2008). Major ISA mapping approaches can be summa-
rized based on satellite images, which have appeared in recent literature (Table 13.1). 

Image classification-based methods for mapping ISA are common (Slonecker et 
al. 2001; Brabec et al. 2002), but overestimation often occurs in urban extent and 
underestimation occurs in rural landscapes due to the limitation of spatial resolu-
tion in remotely sensed data and the heterogeneity in the urban environment (Lu 
and Weng 2004). The high spectral variation in ISA and similar spectral signatures 
between ISA and other nonvegetation land covers also make it difficult to select suit-
able training samples for the ISA class, resulting in misclassification. An alternative 
is to use ERDAS IMAGINE’s subpixel classifier (Ji and Jensen 1999; Civco et al. 
2002). However, the complexity of ISA materials often makes the subpixel classi-
fier difficult to employ and leads to underestimation in ISA extraction. Since a high 
inverse correlation exists between vegetation cover and ISA in urban landscapes, the 
ISA can be estimated based on the established regression models with the vegeta-
tion indices, such as from tasseled cap greenness (Bauer et al. 2008) and fractional 
vegetation cover from the normalized difference vegetation index (NDVI) (Gillies 
et al. 2003). This approach has a drawback in that vegetation greenness varies with 
different seasons, which may result in large uncertainties of ISA estimation. Also 
this method cannot be directly transferred to other study areas or other dates of data 
sets due to local specificities regarding phenologies, climate conditions, and differ-
ent composition of land covers in the urban landscape. Another common method for 
ISA estimation is based on the regression tree model (Yang et al. 2003a,b; Xian and 
Crane 2005; Xian 2008; Xian et al. 2008; Yang et al. 2009), which has been used for 
ISA mapping for continental United States based on Landsat TM images.

In recent years, spectral mixture analysis (SMA) has emerged as an important 
approach for ISA extraction from multispectral data. For example, ISA as one of 
the endmembers may be directly extracted from remotely sensed data (Rashed et al. 
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281Mapping Impervious Surface Distribution

2001; Phinn et al. 2002). ISA estimation may be improved by the addition of high- 
and low-albedo fraction images, which both are used as endmembers in SMA (Wu 
and Murray 2003; Lu and Weng 2006a,b). In addition, multiple endmember SMA 
(MESMA) (Rashed et al. 2003) has also been applied in which several ISA endmem-
bers can be extracted. However, ISA is often overestimated or underestimated when 
medium spatial resolution images are used, depending on the relative proportion of 

Table 13.1
Summary of Major Approaches for Impervious Surface Mapping

Category Approach Materials References

Per-pixel based 
methods

Decision tree classifier, maximum 
likelihood 

IKONOS, 
QuickBird

Goetz et al. 2003; Lu 
and Weng 2009; Lu et 
al. 2011

Subpixel based 
methods

Subpixel classifier TM Ji and Jensen, 1999

Artificial neural networks ASTER Hu and Weng, 2009

Subpixel proportional land cover 
information transformation 
(SPLIT) 

TM, 
videography

Wang and Zhang, 2004

Standard SMA IRS-1C; TM Rashed et al., 2001; 
Phinn et al., 2002

Addition of low- and high-albedo 
fractions derived from standard  
or normalized SMA

ETM+ Wu and Murray, 2003; 
Wu, 2004

Modified approach based on 
low-albedo, high-albedo, and land 
surface temperature

ETM+ Lu and Weng, 2006a, b

Multiple endmember SMA TM Rashed et al., 2003

Combination of support vector 
machines and geospatial analysis

ETM+, ATKIS 
vector data

Esch et al., 2009

Regression tree model ETM+ Xian and Crane 2005; 
Yang et al., 2003a, b

Multiple regression analysis DMSP-OLS, 
ancillary data 

Elvidge et al., 2007; 
Sutton et al., 2009

Vegetation-based 
methods

A regression model based on 
impervious surface and tasseled 
cap greenness

TM Bauer et al., 2008

Based on fraction vegetation cover 
(Fr), i.e., 1-Fr for the developed 
areas

MSS and TM Gillies et al., 2003

Other methods A combination of image 
processing methods based on 
PCA and spatial morphological 
operators

IKONOS Cablk and Minor, 2003

Combination of knowledge-based 
classification and spectral 
unmixing

MSS/TM/
ETM+

Powell et al., 2008
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ISA in a pixel (Wu and Murray 2003; Lu and Weng 2006a,b; Greenfield et al. 2009). 
Since high spatial resolution satellite images (e.g., IKONOS and QuickBird) have 
become available, more research has shifted to the use of these data (Mohapatra and 
Wu 2008; Lu and Weng 2009; Wu 2009; Lu et al. 2011). However, the use of high 
spatial resolution images also presents a challenge for automatically mapping ISA 
distribution (Lu and Weng 2009). The main problems include spectral confusion 
between ISA and other land covers due to limited spectral resolution [i.e., usually 
only visible and near-infrared (NIR) wavelengths are available in very high spatial 
resolution images], high spectral variation within the same land cover, and shadows 
caused by tall objects and the confusion between dark ISA and water/wetland (Dare 
2005; Li et al. 2005; Chen et al. 2007; Zhou et al. 2009). 

13.3 R esearch Problems and Objectives

In a complex urban–rural landscape, traditional classification methods cannot effec-
tively distinguish ISA from other land covers due to the spectral confusion between 
dark ISA and wetland/water. A similar issue happens among bright ISA, soils, and 
cropped fields. Sometimes, traditional classification methods cannot effectively dis-
tinguish ISA from other land covers due to the difficulty in selecting training sample 
plots. Although subpixel-based methods can improve area estimation accuracy, it is 
critical and often difficult to distinguish the pixels with ISA from other land cov-
ers. Rarely has research focused on the improvement of ISA estimation in a com-
plex urban–rural environment with multiscale remote sensing data. Therefore, this 
case study attempts to develop a new method suitable for a complex urban–rural 
landscape for mapping ISA distribution with the combination of Landsat TM and 
QuickBird images.

13.4 D escription of the Study Area

The city of Lucas do Rio Verde (hereafter called Lucas) in Mato Grosso State, 
Brazil, has a relatively short history and small urban extent (see Figure 13.2). It was 
established in 1982 and has experienced rapid urbanization. Highway BR 163 con-
nects Lucas in the north to Santarém, a river port city on the Amazon River, and in 
the south to the heart of the soybean growing area at Cuiabá, capital city of Mato 
Grosso state. Highway BR-163 is a major route for the transport of export bound 
commodities grown in the region. The economic base of Lucas is large-scale agri-
culture, including the production of soy, cotton, rice, and corn as well as poultry and 
swine, to take advantage of the grain feed to add value to production. Major poultry 
and meat producing industries are developing as are other industrial complexes to 
add value to the agricultural output, which is now substantial. The county is at the 
epicenter of soybean production in Brazil, and it is expected to grow in population 
threefold in the next 10 years (personal communication with secretariat for plan-
ning at Lucas). Because this relatively small town has complex urban–rural spatial 
patterns derived from its highly capitalized agricultural base, large silos and ware-
houses, and planned urban growth, Lucas is an ideal site for exploring the methods 
for rapidly mapping urban extent with remotely sensed data. 

Is year or name 
needed?
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283Mapping Impervious Surface Distribution

13.5  Methodology

Mapping ISA with Landsat images in a complex urban–rural frontier is challenging 
due to the mixed pixel problem and the confusion of ISA with other land covers. This 
research designed a comprehensive method based on the combined use of QuickBird 
and Landsat images, as illustrated in Figure 13.3. The major steps include: (1) map-
ping ISA with a hybrid method based on QuickBird imagery, (2) extracting per-pixel 
ISA images from Landsat images based on the thresholding of maximum and mini-
mum filtering images and unsupervised classification, (3) mapping fractional images 
of high-albedo, low-albedo, vegetation, and soil endmembers with linear spectral 

�is figure shows the location of Lucas do
Rio Verde in Mato Grosso State, Brazil.
�e QuickBird image at right was acquired in
June 2008 and is displayed as false color
composite bands 4,3,2 (RGB).
Data sources in the figure include Digital globe,
NASA’s Earth Observatory Team and Instituto
Brasileiro de Georgrafia e Estatistica.
Figure created by Scott Hetrick for ACT,
March 2009.

500
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Santarém
Pará State

Lucas Do Rio Verde
Mato Grosso State

Cuiabá
Mato Grosso State

BR - 163

Brazil

1
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BR
 - 

16
3
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 - 

16
3Lucas Do Rio Verde, Mato Grosso State, Brazil

Figure 13.2  Study area, Lucas do Rio Municipio, Mato Grosso State, Brazil.

Is “false color 
composite 
bands” ok?

Landsat imagery

2. Per-pixel based impervious surface
images, which are  developed with the

combination of thresholding and
unsupervised classification

3. High-albedo and low-albedo
fractional images, which are 

developed with the linear spectral
mixture analysis

3. Landsat-derived fractional
impervious surface image

QuickBird imagery

1. Mapping impervious
surface images with a

hybrid method

4. Evaluation and calibration of the
Landsat-derived impervious surface image

Figure 13.3  Strategy of integrating Landsat TM and QuickBird images for mapping 
impervious surface distribution.
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mixture analysis (LSMA), and producing a fractional ISA image by adding high-
albedo and low-albedo fraction images while removing non-ISA pixels by combin-
ing the per-pixel ISA image from step 2, and (4) establishing a regression model to 
calibrate the Landsat-derived ISA by using the QuickBird-derived ISA imagery.

13.5.1  Image Preprocessing

A Landsat TM image acquired on May 22, 2008 and a QuickBird image acquired 
on June 20, 2008 were used in this research. The TM image was geometrically reg-
istered into a Universal Transverse Mercator (UTM) projection with geometric error 
of less than 0.5 pixel. The nearest neighbor resampling method was used to resample 
the Landsat image into a pixel size of 30 m by 30 m during image-to-image registra-
tion. Radiometric and atmospheric correction was conducted on the TM image by 
utilizing the dark object subtraction (DOS) approach. The DOS model is an image-
based procedure that standardizes imagery for the effects caused by solar zenith 
angle, solar radiance, and atmospheric scattering (Lu et al. 2002; Chander et al. 
2009). Here are the equations used for Landsat image calibration:

	 Rλ = PI · D · (Lλ − Lλhaze)/(Esunλ · COS (θ))	 (13.1)

	 Lλ = gainλ∙DNλ + biasλ	 (13.2)

where Lλ is the apparent at-satellite radiance for spectral band λ, DNλ is the digital 
number of spectral band λ, Rλ is the calibrated reflectance, Lλ.haze is path radiance, 
Esunλ is exoatmospheric solar irradiance, D is the distance between the Earth and 
Sun, and θ is the Sun zenith angle. The path radiance for each band is identified 
based on the analysis of water bodies and shades in the images. The gainλ and biasλ 
are radiometric gain and bias corresponding to spectral band λ, respectively, and 
they are often provided in an image head file or metadata file, or calculated from 
maximal and minimal spectral radiance values (Lu et al. 2002).

13.5.2 M apping ISA with QuickBird Imagery

QuickBird imagery is used to develop ISA data that is used as a reference for estab-
lishing a calibration model for refining the Landsat-derived ISA image. QuickBird 
imagery has four multispectral bands with 2.4-m spatial resolution and one pan-
chromatic band with 0.6-m spatial resolution. In order to make full use of both the 
multispectral and panchromatic images, the wavelet merging technique (Lu et al. 
2008) was used to merge the QuickBird multispectral bands and panchromatic band 
into a new multispectral image with 0.6-m spatial resolution. A hybrid method that 
consisted of thresholding, unsupervised classification, and manual editing was used 
to produce the ISA image from the fused QuickBird imagery (Lu et al. 2011) (see 
Figure 13.4). The fact that vegetation has significantly different spectral features 
comparing with ISA in the NDVI image and clear and deep water bodies have much 
lower spectral values than ISA in the NIR wavelength image, the vegetation and 
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285Mapping Impervious Surface Distribution

water pixels can be masked out with selected thresholds on NDVI and NIR images. 
The major steps for the hybrid approach include (1) producing the NDVI image from 
QuickBird red and near-infrared images and then masking vegetation out with the 
selected threshold on the NDVI image, and masking water out with the selected 
thresholds on the NIR image, (2) extracting spectral signatures of the nonvegetation 
pixels, using an unsupervised classification algorithm to classify the extracted spec-
tral signatures into 50 clusters and merging the clusters into ISA and other classes, 
and (3) manually editing the extracted ISA image (Lu et al. 2011). Although unsuper-
vised classification can separate most ISA from bare soils and wetlands, some confu-
sion still remains between bare soil and bright ISA, and among dark ISA, shadowed 
ISA, wetlands, or shadows from tree crowns. Therefore, visually interpreting the 
extracted ISA image is necessary to further refine the ISA image quality by eliminat-
ing the confused pixels (e.g., bare soils, non-ISA shadows, and wetlands). 

Accuracy assessment is conducted with the error matrix approach (Congalton and 
Mead 1983; Congalton 1991; Janssen and van der Wel 1994; Foody 2002; Congalton 
and Green 2008). A total of 450 test samples were selected with the random sampling 
method. The analyst then examined each test sample plot to decide whether it was 
correctly classified as ISA or not based on visual interpretation on the QuickBird 
color composite. When the accuracy is satisfied, the ISA image with spatial resolu-
tion of 0.6 m is finally aggregated to 30 m to generate fractional ISA image for use 
as reference data. 

13.5.3 D eveloping Per-Pixel Based ISA from Landsat Images

Per-pixel ISA mapping is often based on the image classification of spectral signatures 
(Shaban and Dikshit 2001; Lu et al. 2011), but per-pixel based classification methods 
based on medium or coarse spatial resolution images cannot effectively extract the 
ISA because of the spectral confusion between ISA and other land covers and the 
mixed pixel problems, especially in a complex urban–rural frontier (Wu and Murray 
2003; Lu and Weng 2006a). This research for mapping per-pixel ISA was based on 

QuickBird image

�resholds based on
NDVI and NIR band

Nonvegetation
land covers

Extract spectral signatures for
nonvegetation land covers

Other land coverImpervious surface

Unsupervised classification Vegetation and water

Refine impervious surface
image by manually editing

Figure 13.4  Framework of impervious surface mapping with the hybrid method.
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the combination of filtering images and unsupervised classification of Landsat spec-
tral signatures. The fact that the red-band image in Landsat TM has high spectral 
values for ISA but has low spectral values for vegetations and water/wetlands pro-
vides a potential way to rapidly map ISA. The minimum and maximum filter with a 
window size of 3 × 3 pixels was separately applied to the Landsat red-band image. 
The image differencing between maximum and minimum filtering images was used 
to highlight linear features (mainly roads) and other ISAs. Examination of the dif-
ference image indicated that a threshold of 13 value can extract the ISA image. The 
spectral signature of the initial ISA image was then extracted and was further clas-
sified into 60 clusters using an unsupervised classification method to refine the ISA 
image by removing the non-ISA pixels. Finally, manual editing of the ISA image was 
conducted to make sure that all ISAs, especially in urban regions, were extracted. 
The final per-pixel based ISA image was overlain on the TM color composite to visu-
ally examine the ISA mapping quality in order to make sure all urban area and major 
roads were properly extracted.

13.5.4 M apping Fractional ISA Distribution

As per-pixel methods based on medium or coarse spatial resolution often overes-
timate or underestimate ISA, it is important to estimate fractional ISA images in 
order to improve area estimation. Of the many methods for mapping ISA (Slonecker 
et al. 2001; Brabec et al. 2002), the LSMA-based method has proven valuable for 
extracting fractional ISA from Landsat images (Wu and Murray 2003; Lu and Weng 
2006a,b). LSMA is regarded as a physically based image-processing tool. It supports 
repeatable and accurate extraction of quantitative subpixel information (Smith et al. 
1990). The LSMA approach assumes that the spectrum measured by a sensor is a 
linear combination of the spectra of all components (endmembers) within the pixel 
and that the spectral proportions of the endmembers represent proportions of the 
area covered by distinct features on the ground (Adams et al. 1995; Mustard and 
Sunshine 1999). The mathematical model can be expressed as

	

R f Ri k ik i

k

n

= +
=

∑ ε
1

	 (13.3)

where i is the number of spectral bands used; k = 1, …, n (number of endmembers), 
Ri is the spectral reflectance of band i of a pixel that contains one or more end-
members, fk is the proportion of endmember k within the pixel, Rik is known as the 
spectral reflectance of endmember k within the pixel on band i, and εi is the error 
for band i. For a constrained least squares solution, fk is subject to the following 
restrictions:

	

f fk

k

n

k= ≤ ≤
=

∑ 1 0 1
1

and 	 (13.4)

Should this 
be changed to 
“threshold value 
of 13”?
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=
∑εi

i

m

m2

1

/ 	 (13.5)

The root-mean-square error (RMSE) is used to assess the fit of the model. It is 
calculated for all image pixels. The larger the RMSE is, the worse the fit of the model 
is. So the error image can be used to assess whether the endmembers are properly 
selected and whether the number of selected endmembers is sufficient.

In the LSMA approach, endmember selection is a key step, and many approaches 
have been developed (Lu et al. 2003; Theseira et al. 2003). In practice, image-based 
endmember selection methods are frequently used because image endmembers can 
be easily obtained and they represent the spectra measured at the same scale as the 
image data. Image endmembers can be derived from the extremes of the image fea-
ture space, assuming that they represent the purest pixels in the images (Mustard and 
Sunshine 1999). In order to effectively identify image endmembers and to achieve 
high-quality endmembers, different image transform approaches such as principal 
component analysis (PCA) and minimum noise fraction (MNF) may be used to 
transform the multispectral images into a new data set (Green et al. 1988; Boardman 
and Kruse 1994). Endmembers are then selected from the feature spaces of the trans-
formed images (Garcia-Haro et al. 1996; Cochrane and Souza 1998; van der Meer 
and de Jong 2000; Small 2001, 2002, 2004). In this research, four endmembers (i.e., 
high-albedo objects, low-albedo objects, vegetation, and soil) were selected from the 
feature spaces formed by the MNF components. A constrained least squares solution 
was then used to unmix the Landsat TM multispectral image into four fractional 
images and one error image.

Previous research indicates that the high-albedo fraction image contains the 
bright ISA objects such as building roofs with high spectral values, and low-albedo 
fraction image contains the dark ISA objects such as dark roads and streets with low 
spectral values (Lu and Weng 2006a,b). Therefore, the overall ISA image can be 
extracted from the addition of high-albedo and low-albedo fraction images. One crit-
ical step in mapping ISA is to remove the non-ISA pixels. The strategy of mapping 
fractional ISA can be illustrated based on the LSMA-based methods and per-pixel 
based method (Figure 13.5). By combining per-pixel ISA and high- and low-albedo 
fraction images, a fractional ISA image was then generated with the following rules: 
if the pixel is ISA in the per-pixel based ISA image, the pixel value is then extracted 
from the sum of high-albedo and low-albedo fraction images; otherwise, assign zero 
to the pixel.

13.5.5 �R efining ISA by Integrated Use of Landsat- and 
QuickBird-derived ISA Images

Previous research also indicates that the developed ISA data set from Landsat TM 
images is often overestimated or underestimated, depending on the proportion of ISA 
in a pixel (Wu and Murray 2003; Lu and Weng 2006a). In the complex urban–rural 
landscape, ISA estimation with LSMA-based method often overestimates its area 
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statistics. It is necessary to calibrate this bias. One method is to develop a regression 
model to calibrate the TM-derived ISA images. In this research, the overlap area 
between the 2008 QuickBird and the corresponding Landsat-derived ISA images 
was used for sample collection based on this rule: select one pixel for every five 
intervals on the overlapped images. Because many pixels were non-ISA, they had 
zero values. After removal of all samples with zero values, 1512 samples were used 
to develop the calibration model. A scatterplot of these samples was used to examine 
the relationship between the Landsat-derived and QuickBird-derived ISA images. A 
regression model was developed to conduct the calibration.

13.6 R esults and Discussion

13.6.1  ISA Mapping with QuickBird Imagery

A high-quality ISA data set from QuickBird imagery is required because it is used as 
reference data for calibrating Landsat-derived ISA data set. The accuracy assessment 
based on randomly selected 450 sample plots indicated that 98% overall accuracy 
was achieved, according to visual interpretation on the QuickBird color composite. 
The spatial patterns of ISA distribution can be shown in Figure 13.6. The QuickBird-
derived ISA data were then aggregated from 0.6 to 30 m cell sizes to generate frac-
tional ISA data for use in linking it to Landsat TM image for calibration.

13.6.2 E valuation of Per-Pixel ISA Image from Landsat TM Imagery

Evaluation of the per-pixel ISA image based on overlaying it on the TM color com-
posite indicates that a combination of filtering images and unsupervised classifi-
cation method developed in this research can effectively extract the pixel-based 
ISA data set in the complex urban–rural frontier. In per-pixel based results, each 

Landsat imageMinimum noise
fraction transform

Selection of endmembers:
low-albedo, high-albedo,

vegetation, and soil 

Fractional images:
low-albedo, high-albedo, vegetation, and soil 

Unmixing landsat image with a
constrained least squares solution

Combination of filtering method and
unsupervised classification

Per-pixel based impervious
surface image

Combination of per-pixel impervious
surface image and fractional low-
albedo and high-albedo images

Fractional impervious surface image

Figure 13.5  Strategy of developing fractional impervious surface images based on the 
combination of linear spectral mixture analysis and per-pixel based method.
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extracted ISA pixel is assumed to be 100% ISA. This data set is useful for visually 
interpreting the ISA distribution, but not suitable for area statistics. Therefore, it is 
necessary to produce a subpixel ISA data set for area statistical purpose in order to 
remove the impact of the mixed pixel problem.

13.6.3 D evelopment of Fractional ISA Image from Landsat TM Imagery

The four fraction images developed from Landsat TM imagery with the LSMA 
approach have physical meanings as described in Section 13.2. ISA is mainly con-
centrated on high-albedo and low-albedo fraction images; thus, the fractional ISA 
data can be directly extracted through the addition of the high-albedo and low-albedo 
fraction images. However, some roads appear in the soil fraction image due to the 
confusion of their spectral signatures (see Figure 13.7), and some non-ISA pixels, 
such as water, are also included in the initial fractional ISA image. Therefore, the 
per-pixel based ISA image is used to mask out the non-ISA pixels from the fractional 
ISA image. A comparison of per-pixel ISA can be summarized (Figure 13.8a and b). 
Fractional ISA (Figure 13.8c and d) images indicated that the area amount may be 
significantly overestimated by the per-pixel ISA image. Because of the limitation of 
the LSMA method in extracting ISA information from other land covers, underesti-
mation or overestimation of ISA is common, as shown in previous research (Lu and 
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Figure 13.6  Impervious surface image developed from QuickBird imagery. 
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Weng 2006a,b); thus, it is necessary to further calibrate the fractional ISA image to 
improve the area estimation accuracy.

13.6.4 �C alibration of the Landsat-Derived Fractional 
ISA with the QuickBird-Derived ISA Image

In theory, if the ISA data are accurately estimated from both Landsat TM and 
QuickBird images, the scatterplot between both fractional ISA data sets should 
show a very good linear relationship. As shown in Figure 13.9, the ISA image devel-
oped in this research demonstrates a reasonably good result, although overestima-
tion occurred when the ISA accounted for a relatively small proportion in a pixel 
and underestimation occurred when the ISA accounted for a large proportion in a 
pixel. This trend is similar in other previous research (Wu and Murray 2003; Lu 
and Weng 2006; Greenfield et al. 2009). Overall, a good linear relationship exists 
between the fractional ISA images developed independently from 2008 Landsat TM 

(a) (b)

(c) (d)

Figure 13.7  Fraction images developed with linear spectral mixture analysis based on 
Landsat TM multispectral data: (a) low-albedo, (b) high-albedo, (c) vegetation, and (d) soil.
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and QuickBird images. Based on the samples from QuickBird- and Landsat-derived 
ISA images, a linear regression model is established as follows:

	 y = 1.0674x − 0.0119; R2 = 0.45	 (13.6)

where x is the fractional ISA values from 2008 Landsat TM image, and y is the cali-
brated fraction ISA values. For the non-ISA pixels (i.e., x equals zero), assign a zero 
value to that pixel; otherwise, this equation was used to calibrate the entire image 
of 2008 Landsat TM-derived fractional ISA image. When the ISA was calculated 
from the per-pixel ISA image, the ISA for Lucas município (see Figure 13.2) was 
99.87 km2, accounting for 1.291% of the study area. However, when the ISA was cal-
culated from the calibrated fractional ISA data set, the ISA became only 56.86 km2, 

Variables in 
italics (also in 
paragraph that 
follows)?

56˚40'0''W 55˚55'0''W
12

˚4
0'0

''S
13

˚0
'0

''S
13

˚2
0'

0'
'S

12
˚4

0'0
''S

13
˚0

'0
''S

13
˚2

0'
0'

'S

12
˚4

0'
0'

'S
13

˚0
'0

''S
13

˚2
0'

0'
'S

12
˚4

0'
0'

'S
13

˚0
'0

''S
13

˚2
0'

0'
'S

13
˚5

'0
''S

13
˚0

'0
''S

13
˚5

'0
''S

13
˚0

'0
''S

13
˚5

'0
''S

13
˚0

'0
''S

13
˚5

'0
''S

13
˚0

'0
''S

56˚20'0''W 56˚0'0''W

56˚40'0''W 56˚20'0''W 56˚0'0''W 55˚55'0''W

56˚40'0''W 56˚20'0''W 56˚0'0''W 55˚55'0''W

56˚40'0''W 56˚20'0''W 56˚0'0''W 55˚55'0''W

(a) (b)

(c) (d)

0 12.5 25

Km

0 1.25 2.5

Km

0 12.5 25

Km

0 1.25 2.5

Km

1

0

Figure 13.8  Comparison of impervious surface results with pixel-based (a and b) and 
subpixel-based (c and d) methods.

K13587_C013.indd   291 10/12/2011   6:17:08 PM



292 Environmental Remote Sensing and Systems Analysis

accounting for only 0.735%. This implies that development of fractional ISA data set 
is required for ISA measurement, especially in an urban–rural frontier.

13.7  Conclusions

The complexity of ISA in the urban landscape and the mixed pixel problem in 
medium and coarse spatial resolution images make the mapping of ISA a challeng-
ing task. Traditional per-pixel based image classification methods cannot effectively 
handle the mixed pixel problem, and subpixel-based methods cannot effectively 
separate the pixels of ISA from other land covers; thus, underestimation or overesti-
mation of the ISA are common, depending on the proportion of ISA in a pixel. The 
method described in this chapter, which is based on the combination of per-pixel 
based ISA mapping with filtering and unsupervised classification, and subpixel-
based method with the LSMA approach, can effectively map ISA distribution with 
Landsat images. The calibration with QuickBird-derived ISA data set can further 
reduce the bias caused by mixed pixel problems and thus improve ISA mapping 
performance. The major advantage of the method described in this chapter is that the 
ISA estimation can be considerably improved comparing with per-pixel based results 
in a complex urban–rural frontier. More research is needed to apply this method to 
other study areas and other dates of Landsat images to examine its transferability 
and robustness.
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