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220 Advances in Environmental Remote Sensing

9.1 Introduction

The classification of remotely sensed data has long attracted the attention of the remote 
sensing community because classification results are fundamental sources for many envi-
ronmental and socioeconomic applications. Scientists and practitioners have made great 
efforts in developing advanced classification approaches and techniques for improving 
classification accuracy (Gong and Howarth 1992; Kontoes et al. 1993; Foody 1996; San 
Miguel-Ayanz and Biging 1997; Aplin, Atkinson, and Curran 1999; Stuckens, Coppin, and 
Bauer 2000; Franklin et al. 2002; Pal and Mather 2003; Gallego 2004; Lu and Weng 2007; 
Blaschke 2010; Ghimire, Rogan, and Miller 2010). However, classifying remotely sensed 
data into a thematic map remains a challenge because many factors, such as the  complexity 
of the landscape under investigation, the availability of reference data, the selected remotely 
sensed data, image-processing and image classification approaches, and the analyst’s expe-
riences, may affect classification accuracy. Many uncertainties or errors may be introduced 
into the classification results; thus, much effort should be devoted to the identification of 
these major factors in the image classification process and then to improving them. This 
chapter provides a brief overview of the major steps involved in the process of image clas-
sification, discusses the potential techniques for improving land-cover classification per-
formance, and provides a case study for land use/cover classification in a moist tropical 
region of the Brazilian Amazon with Landsat thematic mapper (TM) imagery.

9.2 overview of Image Classification Procedure

Classification of remotely sensed imagery is a complex process and requires the consider-
ation of many factors. Figure 9.1 illustrates the major steps of an image classification proce-
dure. Sections 9.2.1 through 9.2.8 provide brief descriptions for each step.

9.2.1 Nature of Remote Sensing Image Classification

Before implementing image classification for a specific study area, it is very important 
to clearly define the research problems that need to be solved, the objectives, and the 
location and size of the study area (Jensen 2005). In particular, clearly understanding the 
needs of the end user is critical. It is helpful to list some questions, such as the following: 
What is the detailed classification system and what are the most interesting land  covers? 
What is the accuracy for each land cover or overall accuracy? What is the minimum 
mapping unit? What previous research work has been done and how can one maintain 
 compatibility with it? What data sources are available and what data are required? What 
are the time, cost, and labor constraints? These questions directly affect the  selection of 
remotely sensed data, selection of classification algorithms, and design of a classification 
procedure for a specific purpose.

9.2.2 Determination of a Classification System and Selection of Training Samples

A suitable classification system is a prerequisite for successful classification. In general, 
a classification system is designed based on the user’s needs, the spatial resolution of 
the remotely sensed data, compatibility with previous work, available image-processing 
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Remote Sensing Image Classification 221

and classification algorithms, and time constraints. Such a system should be informative, 
exhaustive, and separable (Landgrebe 2003; Jensen 2005). In many cases, a hierarchical 
classification system is adopted to take different conditions into account.

A sufficient number of training samples and their representativeness are critical for 
image classifications (Hubert-Moy et al. 2001; Chen and Stow 2002; Landgrebe 2003; 
Mather 2004). Training samples are usually collected from fieldwork or from fine spatial 
resolution aerial photographs and satellite images. Different collection strategies, such as 
single pixel, seed, and polygon, may be used, but they will influence classification results, 
especially for classifications with fine spatial resolution image data (Chen and Stow 2002). 
When the  landscape under investigation is complex and heterogeneous, selection of a suf-
ficient number of training samples becomes difficult. This problem becomes complicated 
if medium or coarse spatial resolution data are used for classification, because a large 
volume of mixed pixels may occur. Therefore, selection of training samples must consider 
the spatial resolution of the remote sensing data being used, the availability of ground 
reference data, and the complexity of the landscapes under investigation.

9.2.3 Selection of Remotely Sensed Data

Remotely sensed data have different spatial, radiometric, spectral, and temporal resolu-
tions. Understanding the strengths and weaknesses of different types of sensor data is 
essential for selecting suitable remotely sensed data for image classification. Some pre-
vious literature has reviewed the characteristics of major types of remote sensing data 
(Barnsley 1999; Estes and Loveland 1999; Althausen 2002; Lefsky and Cohen 2003). The 
selection of suitable remotely sensed data requires considering such factors as the needs 
of the end user, the scale and characteristics of the study area, available image data and 
their characteristics, cost and time constraints, and the analyst’s experience in using the 
selected images. The end user’s need determines the nature of classification and the scale 

5. Feature extraction (e.g., vegetation indices, textures,
    transformation, and data fusion) and selection

4. Data preprocessing (e.g., geometric
    rectification, radiometric and
    atmospheric calibration)

3. Collection of materials
    (remotely sensed and ancillary data)

1. Research objectives and characteristics of the study area

2. Determination of
    classification system
    and selection of
    training samples

8. Evaluation of
    classified image

7. Postclassification
    processing

6. Image classification
    with a suitable classifier

FIguRe 9.1
Major steps involved in the image classification procedure.
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of the study area, thus affecting the selection of remotely sensed data. In general, at a local 
level, a fine-scale classification system is needed, thus high spatial resolution data such as 
IKONOS and QuickBird data are helpful. At a regional scale, medium spatial resolution 
data such as those from Landsat TM and Terra Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) are the most frequently used data. At a continental 
or global scale, coarse spatial resolution data such as Advanced Very High Resolution 
Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and 
System Pour l’Observation de la Terre (SPOT) vegetation data are preferable.

Atmospheric condition is another important factor that influences the selection of 
remote sensing data. The frequent cloudy conditions in moist tropical regions are often 
an obstacle for capturing high-quality optical sensor data. Therefore, different kinds of 
radar data may serve as an important supplementary data source. Since multiple sources 
of sensor data are now readily available, image analysts have more choices to select suit-
able remotely sensed data for a specific study. In this situation, monetary cost is often an 
important factor affecting the selection of remotely sensed data.

9.2.4 Image Preprocessing

Image preprocessing may include the examination of image quality, geometric rectifica-
tion, and radiometric and atmospheric calibration. If different ancillary data are used, data 
conversions among different sources or formats and quality evaluation of these data are 
necessary before they can be incorporated into a classification procedure. The examination 
of original images to see any remote sensing system–induced radiometric errors is neces-
sary before the data are used for further processing. Accurate geometric rectification or 
image registration of remotely sensed data is a prerequisite for combining different source 
data in a classification process.

If a single-date image is used for classification, atmospheric correction may not be 
required (Song et al. 2001). However, when multitemporal or multisensor data are used, 
atmospheric calibration is mandatory. This is especially true when multisensor data, such 
as TM and SPOT or TM and radar are integrated for an image classification. A variety of 
methods, ranging from simple relative calibration to the dark-object subtraction (DOS) 
method and complex physically based models (e.g., second simulation of the satellite sig-
nal in the solar spectrum [6S]), have been developed for radiometric and atmospheric 
corre ction (Markham and Barker 1987; Gilabert, Conese, and Maselli 1994; Chavez 1996; 
Stefan and Itten 1997; Vermote et al. 1997; Tokola, Löfman, and Erkkilä 1999; Heo and 
FitzHugh 2000; Song et al. 2001; Du, Teillet, and Cihlar 2002; Lu et al. 2002; McGovern et al. 
2002; Canty, Nielsen, and Schmidt 2004; Hadjimitsis, Clayton, and Hope 2004; Chander, 
Markham, and Helder 2009). Topographic correction is important if the study area is 
located in rugged or mountainous regions (Teillet, Guindon, and Goodenough 1982; Civco 
1989; Colby 1991; Meyer et al. 1993; Richter 1997; Gu and Gillespie 1998; Hale and Rock 2003; 
Lu et al. 2008a). A detailed description of atmospheric and topographic correction is beyond 
the scope of this chapter. Interested readers may check the references cited in this section 
to identify a suitable approach for a specific study.

9.2.5 Feature extraction and Selection

Selecting suitable variables is a critical step for successfully performing an image classi-
fication. Many potential variables may be used in image classification, including spectral 
signatures, vegetation indices, transformed images, textural or contextual information, 
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multitemporal images, multisensor images, and ancillary data. Because of the different 
capabilities of these variables in land-cover separability, the use of too many variables 
in a  classification procedure may decrease classification accuracy (Price, Guo, and Stiles 
2002). It is important to select only those variables that are most useful in separating 
land-cover or vegetation classes, especially when hyperspectral or multisource data are 
employed. Many approaches, such as principal component analysis, minimum noise frac-
tion transform, discriminant analysis, decision boundary feature extraction, nonparamet-
ric weighted feature extraction, wavelet transform, and spectral mixture analysis (Myint 
2001; Okin et al. 2001; Rashed et al. 2001; Asner and Heidebrecht 2002; Lobell et al. 2002; 
Neville et al. 2003; Landgrebe 2003; Platt and Goetz 2004), may be used for feature extrac-
tion, in order to reduce the data redundancy inherent in remotely sensed data or to extract 
specific land-cover information.

Optimal selection of spectral bands for image classification has been extensively 
 discussed in the literature (Mausel, Kramber, and Lee 1990; Landgrebe 2003). Graphic 
 analysis (e.g., bar graph spectral plots, cospectral mean vector plots, two-dimensional 
 feature space plot, and ellipse plots) and statistical methods (e.g., average divergence, trans-
formed divergence, Bhattacharyya distance, and Jeffreys–Matusita distance) have been 
used to identify  optimal subsets of bands (Jensen 2005). In practice, divergence- related 
algorithms based on training samples are often used to evaluate class separability and 
select optimal bands.

9.2.6 Selection of a Suitable Classification Algorithm

In recent years, many advanced classification approaches, such as artificial neural net-
works, decision trees, fuzzy sets, and expert systems, have been widely applied in image 
classification. Cihlar (2000) discussed the status and research priorities of land-cover 
mapping for large areas. Franklin and Wulder (2002) assessed land-cover classification 
approaches with medium spatial resolution remotely sensed data. Published works by 
Tso and Mather (2001) and Landgrebe (2003) specifically focused on image-processing 
approaches and classification algorithms. In general, image classification approaches can 
be grouped into different categories, such as supervised versus unsupervised,  parametric 
versus nonparametric, hard versus soft (fuzzy) classification, per-pixel, subpixel, and per-
field (Lu and Weng 2007). There are many different classification methods available. For 
the sake of convenience, Lu and Weng (2007) grouped classification approaches as per-
pixel, subpixel, per-field, contextual, and knowledge-based approaches, and a combina-
tion approach of multiple classifiers, and described the major advanced classification 
approaches that have appeared in the recent literature. In practice, many factors, such 
as the spatial resolution of the remotely sensed data, different data sources, classifica-
tion systems, and the availability of classification software, must be taken into account 
when selecting a classification method for use. If the classification is based on spectral 
signatures, parametric classification algorithms such as maximum likelihood are often 
used; otherwise, if multisource data are used, nonparametric classification algorithms 
such as the decision tree and neural network are commonly used. Spatial resolution is an 
important factor affecting the selection of a suitable classification method. For example, 
high spectral variation within the same land-cover class in high spatial and radiometric 
resolution images such as those from QuickBird and IKONOS often results in poor clas-
sification accuracy when a traditional per-pixel classifier is used. In this circumstance, 
per-field or object-oriented classification algorithms outperform per-pixel classifiers 
(Thomas, Hendrix, and Congalton 2003; Benz et al. 2004; Jensen 2005; Stow et al. 2007; 
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Mallinis et al. 2008; Zhou, Troy, and Grove 2008). For medium and coarse spatial resolu-
tion data,  however,  spectral information is a more important attribute than spatial infor-
mation because of the loss of spatial information. Since mixed pixels create a problem in 
medium- and  coarse-resolution imagery, per-pixel classifiers have repeated difficulties in 
dealing with them. Subpixel-based classification methods can provide better area estima-
tion than per-pixel-based methods (Lu and Weng 2006).

9.2.7 Postclassification Processing

Research has indicated that postclassification processing is an important step in improving 
the quality of classifications (Harris and Ventura 1995; Murai and Omatu 1997; Stefanov, 
Ramsey, and Christensen 2001; Lu and Weng 2004). Its roles include the recoding of land 
use/cover classes, removal of “salt-and-pepper” effects, and modification of the classified 
image using ancillary data or expert knowledge. Traditional per-pixel classifiers based 
on spectral signatures often lead to salt-and-pepper effects in classification maps due to 
the complexity of the landscape. Thus, a majority filter is often applied to reduce noise. 
Also, ancillary data are often used to modify the classification image based on established 
expert rules. For example, forest distribution in mountainous areas is related to elevation, 
slope, and aspects. Data describing terrain characteristics can be used to modify classifica-
tion results based on the knowledge of specific vegetation classes and topographic factors. 
In urban areas, housing or population  density is related to urban land-use distribution 
patterns, and such data can be used to correct some classification confusions between 
commercial and high-intensity residential areas or between recreational grass and crops 
(Lu and Weng 2006). As more and more ancillary data, such as digital elevation mod-
els (DEMs) and soil, roads, population, and economic data become available, geographic 
information systems (GIS) techniques will play an important role in managing these ancil-
lary data and in modifying the classification results using the established knowledge or 
relationships between land cover and these ancillary data.

9.2.8 evaluation of Classification Performance

The evaluation of classification results is an important process in the classification pro-
cedure. Different approaches may be employed, ranging from a qualitative evaluation 
based on expert knowledge to a quantitative accuracy assessment based on sampling 
strategies. A classification accuracy assessment generally includes three basic compo-
nents: (1) sampling design, (2) response design, and (3) estimation and analysis proce-
dures (Stehman and Czaplewski 1998). The error matrix approach is one of the most 
widely used in accuracy assessment (Foody 2002). In order to properly generate an error 
matrix, one must consider the following factors: reference data collection, classification 
scheme, sampling scheme, spatial autocorrelation, and sample size and sample unit 
(Congalton and Plourde 2002). After the generation of an error matrix, other impor-
tant accuracy assessment elements, such as overall accuracy, omission error, commis-
sion error, and kappa coefficient, can be derived (Congalton and Mead 1983; Hudson 
and Ramm 1987; Congalton 1991; Janssen and van der Wel 1994; Kalkhan, Reich, and 
Czaplewski 1997; Stehman 1996; Smits, Dellepiane, and Schowengerdt 1999; Congalton 
and Plourde 2002; Foody 2002, 2004; Congalton and Green 2008). In particular, kappa 
analysis is recognized as a powerful method for  analyzing a single error matrix and 
for comparing the differences among various error matrices (Congalton 1991; Smits, 
Dellepiane, and Schowengerdt 1999; Foody 2004). Many authors, such as Congalton (1991), 
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Remote Sensing Image Classification 225

Janssen and van der Wel (1994), Smits, Dellepiane, and Schowengerdt (1999), Foody (2002), 
and Congalton and Green (2008), have reviewed the methods for classification accuracy 
assessment.

9.3  overview of Major techniques for Improving 
Classification Performance

Different remotely sensed data will have variations in spatial, spectral, radiometric, and 
temporal resolutions, as well as differences in polarization. Making full use of these char-
acteristics is an effective way of improving classification accuracy (Lu and Weng 2005; 
Lu et al. 2008b). Generally speaking, spectral response is the most important information 
used for land-cover classification. As high spatial resolution data become readily available, 
textural and contextual information become significant in image classification (Lu et al. 
2008b). This section discusses some major techniques used for improving the performance 
of land-cover classification.

9.3.1 use of Spatial Information

The spatial resolution of an image determines the level of detail that can be observed on 
the Earth’s surface, and spatial information plays an important part in improving land 
use/cover classification accuracy, especially when high spatial resolution images such as 
IKONOS and QuickBird images are employed (Sugumaran, Zerr, and Prato 2002; Goetz 
et al. 2003; Herold, Liu, and Clarke 2003; Hurtt et al. 2003; van der Sande, de Jong, and de 
Roo 2003; Xu et al. 2003; Zhang and Wang 2003; Wang et al. 2004; Stow et al. 2007; Mallinis 
et al. 2008; Zhou, Troy, and Grove 2008). A major advantage of these fine spatial resolution 
images is that such data greatly reduce the mixed-pixel problem, and there is the potential 
to extract much more detailed information on land-cover structures from these data than 
from medium or coarse spatial resolution data. However, some new problems associated 
with fine spatial resolution image data emerge, notably the shadows caused by topography, 
tall buildings, or trees, and the high spectral variation within the same land-cover class. 
These challenges may lower classification accuracy if classifiers cannot effectively  handle 
them (Irons et al. 1985; Cushnie 1987). The huge amount of data storage capacity and severe 
shadow problems in fine spatial resolution images leads to challenges in selecting suit-
able image-processing approaches and classification algorithms. Spatial information may 
be used in different ways, such as in contextual-based or object-oriented classification 
approaches, or textural images (Blaschke 2010; Ghimire, Rogan, and Miller 2010).

9.3.2 Integration of Different Sensor Data

Images from different sensors may contain distinctive features in reflecting land-cover sur-
faces. Data fusion or integration of multisensor data takes advantage of the strengths of 
distinct image data for improving visual interpretation and quantitative analysis. Many meth-
ods have been developed to integrate spectral and spatial information (Gong 1994; Dai and 
Khorram 1998; Pohl and van Genderen 1998; Chen and Stow 2003; Ulfarsson, Benediktsson, 
and Sveinsson2003; Lu et al. 2008b; Amarsaikhan et al. 2010; Ehlers et al. 2010). Solberg, 
Taxt, and Jain (1996) broadly divided data fusion methods into four categories: (1) statistical, 
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(2) fuzzy logic, (3) evidential reasoning, and (4) neural network. Pohl and van Genderen 
(1998) reviewed data fusion methods, including color-related techniques (e.g., color com-
posite, intensity, hue, and saturation [IHS], and luminance and chrominance), statistical/
numerical methods (e.g., arithmetic combination, principal component analysis, high-pass 
filtering, regression variable substitution, canonical variable substitution, component sub-
stitution, and wavelets transforms), and various combinations of these methods. A recent 
review paper by Zhang (2010) further overviewed multisource data fusion techniques and 
discussed their trends. Li, Li, and Gong (2010) discussed the measures based on multivari-
ate statistical analysis to evaluate the quality of data fusion results. In general, data fusion 
involves two major procedures: (1) geometric coregistration of two data sets and (2) mixture 
of spectral and spatial information contents to generate a new data set that contains the 
enhanced information from both data sets. Accurate registration between the two data sets 
is extremely important for precisely extracting information contents from both data sets, 
especially for line features such as roads and rivers. Radiometric and atmospheric calibra-
tions are also needed before multisensor data are merged.

9.3.3 use of Multitemporal Data

Temporal resolution refers to the time interval in which a satellite revisits the same loca-
tion. A higher temporal resolution provides better opportunities to capture high-quality 
images. This is particularly useful for areas such as moist tropical regions, where adverse 
atmospheric conditions regularly occur. The use of remotely sensed data collected over 
different seasons has proven useful in improving classification accuracy, especially for 
crop and vegetation classification (Brisco and Brown 1995; Wolter et al. 1995; Lunetta and 
Balogh 1999; Oetter et al. 2000; Liu, Takamura, and Takeuchi 2002; Guerschman et al. 2003). 
For example, Lunetta and Balogh (1999) compared single- and two-date Landsat-5 TM 
images (spring leaf-on and fall leaf-off images) for wetland mapping in Maryland and 
Delaware, and found that multitemporal images provided better classification accuracies 
than single-date imagery by itself. An overall classification accuracy of 88% was achieved 
from multitemporal images, compared with 69% from single-date imagery.

9.3.4 use of Ancillary Data

Ancillary data, such as topography, soils, roads, and census data, may be combined with 
remotely sensed data to improve classification performance. Harris and Ventura (1995) and 
Williams (2001) suggested that ancillary data may be used to enhance image classification 
in three ways: (1) preclassification stratification, (2) classifier modification, and (3) postclas-
sification sorting. Since land-cover distribution is related to topography, topographic data 
have proven to be valuable in improving land-cover classification accuracy in mountain ous 
regions (Janssen, Jaarsma, and van der Linden 1990; Meyer et al. 1993; Franklin, Connery, 
and Williams 1994), and topographic data are useful at all three stages of image classifica-
tion as (1) a stratification tool in preclassification, (2) an additional channel during clas-
sification, and (3) a smoothing means in postclassification (Senoo et al. 1990; Maselli et al. 
2000). In urban studies, DEM data are rarely used to aid image classification due to the fact 
that urban regions are often located in relatively flat areas. Instead, data related to human 
systems such as population distribution and road density are frequently incorporated in 
urban classifications (Mesev 1998; Epstein, Payne, and Kramer 2002; Zhang et al. 2002; Lu 
and Weng 2006). As discussed in Section 9.2.7, GIS techniques play an important role in the 
effective use of ancillary data in improving land use/cover classification performance.
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9.4  Case Study for Land-Cover Classification with 
Landsat thematic Mapper Imagery

The previous sections have briefly reviewed major steps for image classification and poten-
tial measures for improving classification accuracy. The following section provides a case 
study in the moist tropical region of Brazil for showing how combination of remote sensing-
derived variables and original spectral bands improved classification performance.

9.4.1 Research Problem and Objective

Landsat TM imagery is the most common data source for land-cover classification, and 
much previous research has explored methods to improve classification performance, 
including the use of advanced classification options such as neural network, extraction 
and classification of homogeneous objects (ECHO), object-oriented classifiers, decision tree 
classifier, and subpixel-based methods (Lu et al. 2004a, Lu and Weng 2007; Blaschke 2010). 
However, the role of vegetation indices and textural images in improving land-cover clas-
sification performance is still poorly understood, in particular in moist tropical regions 
such as the Brazilian Amazon. Therefore, we selected Altamira, Pará state, Brazil, as a case 
study to explore the role of vegetation indices and textural images in improving vegetation 
classification performance.

9.4.2 Study Area

Altamira is located along the Trans-Amazonian Highway (BR-230) in the northern Brazilian 
state of Pará. The city of Altamira lies on the Xingu River at the eastern edge of the study 
area (see Figure 9.2). In the 1950s, an effort was made to attract colonists from northeastern 
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Altamira of Para state, Brazil, was selected as the area for the case study.
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Brazil, who came and settled along streams as far as 20 km from the city center. With the 
construction of the Trans-Amazonian Highway in 1970, this population and older caboclo 
settlers from earlier rubber boom eras claimed land along the new highway and legal-
ized their land claims. Early settlement was driven by geopolitical goals of settling in the 
northern region of Brazil and by political economic policies aimed at shifting production 
of staples like rice, corn, and beans from the southernmost Brazilian states to the northern 
region. The uplands have a somewhat rolling topography, with highest elevation measur-
ing approximately 350 m. Floodplains along the Xingu are flat, with the lowest elevation 
measuring approximately 10 m. Nutrient-rich alfisols and infertile ultisols and oxisols are 
found in the uplands of this area. The overall soil quality of this area is above-average 
fertility for Amazonia. The dominant native types of vegetation are mature moist forest 
and liana forest. Major deforestation in the area, began in 1972, which was concurrent with 
the construction of the Trans-Amazonian Highway (Moran 1981). Deforestation has led to 
a complex composition of different vegetation types in this area, such as different second-
ary succession stages, pasture, and agroforestry (Moran et al. 1994; Moran, Brondízio, and 
Mausel 1994; Moran and Brondízio 1998). Annual rainfall in Altamira is approximately 
2000 mm and is concentrated during the period from late October through early June; the 
dry period occurs between June and September. The average temperature is about 26°C 
(Tucker, Brondízio, and Moran 1998).

9.4.3 Methods

After the research problems were clearly identified, research objectives were defined, and 
the study area was selected, the next step was to design a feasible classification procedure, 
which may include reference data collection for use as training samples, development of 
suitable variables from the selected remote sensing data, selection of a suitable classifica-
tion algorithm, and evaluation of the classified image.

9.4.3.1 Data Collection and Preprocessing

Sample plots for different land covers, especially for different stages of secondary succes-
sion and pasture, were collected during the summer of 2009 in the Altamira study area. 
Prior to fieldwork, candidate sample locations of complex vegetation areas were identified 
in the laboratory. In each sample area, the locations of different vegetation-cover types were 
recorded using a global positioning system (GPS) device, and detailed written descrip-
tions and photographs of vegetation stand structures (e.g., height, canopy cover, species 
composition) were recorded. Sketch-map forms were used in conjunction with small field 
maps showing the candidate sample locations on A4 paper to note the spatial extent and 
patch shape of vegetation-cover types in the area surrounding the GPS point. Following 
the fieldwork, GPS points and field data were edited and processed using GIS and remote 
sensing software to create representative area of interest (AOI) polygons to be used for 
image classification. The AOI polygons were created by identifying areas of uniform pixel 
reflectance in an approximate 3 × 3 pixel window size on the Landsat TM imagery. A land-
cover classification system was designed based on our research objectives, compatibility 
with our previous research work (Mausel et al. 1993; Moran et al. 1994; Moran, Brondízio, 
and Mausel 1994; Moran and Brondízio 1998) and field surveys. The land-cover classifica-
tion system included three forest classes (upland, flooding, and liana), three succession 
stages (initial, intermediate, and advanced stages, or SS1, SS2, and SS3), pasture, and four 
nonvegetated classes (water, wetland, urban, and burn scars).
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A Landsat-5 TM image acquired on July 2, 2008 was geometrically registered to a pre-
viously corrected Landsat TM image with a geometric error of less than half a pixel. The 
nearest-neighbor resampling algorithm was used to resample the TM imagery to a pixel 
size of 30 × 30 m. An improved image-based DOS model was used to perform radio-
metric and atmospheric correction (Chavez 1996; Lu et al. 2002; Chander, Markham, and 
Helder 2009). The gain and offset for each band and solar elevation angle were obtained 
from the image header file. The path radiance was identified based on clear water for 
each band.

9.4.3.2 Selection of Suitable Vegetation Indices

Many vegetation indices have been used for different purposes, such as estimation of 
 biophysical parameters (Bannari et al. 1995; McDonald, Gemmell, and Lewis 1998). Lu et al. 
(2004b) examined the relationships between vegetation indices and forest stand structure 
attributes such as biomass, volume, and average stand diameter in different biophysical 
conditions in the Brazilian Amazon. In this research, they found that vegetation indices 
with TM band 5 had higher correlation coefficients than those without band 5, such as 
normalized difference vegetation index (NDVI), in study areas like Altamira with complex 
forest stand structure. Therefore, in this research, different vegetation indices, including 
band 5, were designed, as well as other indices as summarized in Table 9.1. In order to 
identify suitable vegetation indices for improving vegetation classification performance, 
training sample plots for different vegetation types based on field surveys were selected 
for conducting separability analysis with the transformed divergence algorithm (Mausel, 
Kramber, and Lee 1990; Landgrebe 2003). Individual vegetation indices and a combination 
of two or more indices were explored. When different combinations of two or more indices 

TAble 9.1

Vegetation Indices Used in Research

Sl. no. Vegetation Index Equation

1 TC1 0.304TM1 + 0.279TM2 + 0.474TM3 + 0.559TM4 + 0.508TM5 + 0.186TM7
2 TC2 −0.285TM1 − 0.244TM2 − 0.544TM3 + 0.704TM4 + 0.084TM5 − 0.180TM7
3 TC3 0.151TM1 + 0.197TM2 + 0.328TM3 + 0.341TM4 − 0.711TM5 − 0.457TM7
4 ASVI ((2NIR+1) (2NIR+1) 8(NIR 2RED+BLUE) )/22− − −

5 MSAVI ((2NIR+1) (2NIR+1) 8(NIR 2RED) )/22− − −

6 ND4_2 (TM4 − TM2)/(TM4 + TM2)
7 ND4_25 (TM4 − TM2 − TM5)/(TM4 + TM2 + TM5)
8 ND42_53 (TM4 + TM2 − TM5 − TM3)/(TM4 + TM2 + TM5 + TM3)
9 ND42_57 (TM4 + TM2 − TM5 − TM7)/(TM4 + TM2 + TM5 + TM7)
10 ND4_35 (TM4 − TM3 − TM5)/(TM4 + TM3 + TM5)
11 ND45_23 (TM4 + TM5 − TM2 − TM3)/(TM4 + TM5 + TM2 + TM3)
12 ND4_57 (2 × TM4 − TM5 − TM7)/(TM4 + TM5 + TM7)
13 NDVI (TM4 − TM3)/(TM4 + TM3)
14 NDWI (TM4 − TM5)/TM4 + TM5)

Note: ND = normalized difference; ASVI = atmospheric and soil vegetation index; MSAVI = modified soil 
adjusted vegetation index; TC = tasseled-cap transform. NIR, RED, and BLUE represent near-infrared, 
red, and blue band in TM image, that is, TM bands 4, 3 and 1. The ND number represents the TM spec-
tral band.
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are tested, standard deviation and correlation coefficients are used to determine the best 
combination of vegetation indices according to the following equation:

 

Best com ation STDbin =
= =
∑ ∑i
i

n

ij
j

n

R
1 1

/

 

 (9.1)

where STDi is the standard deviation of the vegetation index image i, Rij is the correlation 
coefficient between two vegetation index images i and j, and n is the number of vegetation 
index images.

9.4.3.3 Selection of Suitable Textural Images

Many texture measures have been developed and textural images have proven useful 
in improving land-cover classification accuracy (Haralick, Shanmugam, and Dinstein 
1973; Kashyap, Chellappa, and Khotanzad 1982; Marceau et al. 1990; Augusteijn, Clemens, 
and Shaw 1995; Shaban and Dikshit 2001; Chen, Stow, and Gong 2004; Lu et al. 2008b). 
Of the many texture measures, gray-level co-occurrence matrix (GLCM)-based textural 
images have been extensively used in image classification (Marceau et al. 1990; Lu et al. 
2008b). Lu (2005) explored the roles of textural images in biomass estimation and found 
that textural images based on variance with TM band 2 and a window size of 9 × 9 
had a significant relationship with biomass. In another study, Lu and his colleagues (Lu 
et al. 2008b) explored textural images in vegetation classification and found that textural 
images based on entropy, second moment, dissimilarity, and contrast, with window sizes 
of 7 × 7 or 9 × 9, exhibit better performance. Therefore, in our research, GLCM-based tex-
ture measures such as variance, homogeneity, contrast, dissimilarity, and entropy were 
explored with a window size of 9 × 9 and Landsat TM bands 2, 3, 4, 5, and 7. Separability 
analysis with transformed divergence based on selected training sample plots of differ-
ent vegetation classes was used for the selection of a potential single textural image or 
a combination of two or more textural images. The analysis of correlation and standard 
deviation of each textural image was used to identify the best combination according to 
Equation 9.1.

9.4.3.4 Land-Cover Classification

Maximum likelihood classification (MLC) is the most common parametric classifier that 
assumes normal or near-normal spectral distribution for each feature of interest and an 
equal prior probability among the classes. This classifier is based on the probability that a 
pixel belongs to a particular class. It takes the variability of classes into account by using 
the covariance matrix. A detailed description of MLC can be found in many textbooks (e.g., 
Richards and Jia 1999; Lillesand and Kiefer 2000; Jensen 2005). In our research, MLC was 
used to conduct land-cover classification based on different scenarios, in order to explore 
the roles of vegetation indices and textural images in improving land-cover, especially 
vegetation classification in the moist tropical region. The scenarios included the consider-
ation of six TM spectral bands, a combination of spectral and vegetation indices, a combi-
nation of spectral and textural images, and a combination of spectral indices, vegetation 
indices, and textural images. These classification results were analyzed based on accuracy 
assessment.
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9.4.3.5 Accuracy Assessment

Accuracy assessment is often required for a land-cover classification. A common method for 
accuracy assessment involves the use of an error matrix, for which the literature has provided 
the meanings of and calculation methods for overall accuracy, producer’s accuracy, user’s 
accuracy, and kappa coefficient (Congalton 1991; Smits, Dellepiane, and Schowengerdt 1999; 
Foody 2002; Congalton and Green 2008). In this study, a total of 338 test sample plots were 
used for accuracy assessment. An error matrix was developed for each classification scenario, 
and then producer’s accuracy and user’s accuracy for each class and overall accuracy and 
kappa coefficient for each scenario were calculated based on the corresponding error matrix.

9.4.4 Results

This section provides the analysis of the identified vegetation indices and textural images 
and compared the classified results with MLC based on different scenarios.

9.4.4.1 Identification of Vegetation Indices and Textural Images

Since the classification of vegetation is especially difficult in our research, the selection 
of vegetation indices or textural images is essential to enhance vegetation separability, 
especially for different types of forest and secondary succession stages. Therefore, three 
forest types (upland forest, flooding forest, and liana forest), three succession stages 
 (initial, intermediate, and advanced succession stages, or SS1, SS2, and SS3), and pasture 
were selected. The separability analysis indicated that the best single vegetation index 
includes ND4-25, TC2 (TC stands for tasseled cap), ND42-53, ND4-35, and TC3, and the 
best single textural images are from the dissimilarity on TM bands 2 or 3 (TM2-DIS, 
TM3-DIS), contrast on TM band 2 (TM2-CON), and homogeneity on TM bands 2 or 3 
(TM2-HOM or TM3-HOM). However, no single individual vegetation index or textural 
image could separate the vegetation types. According to the separability analysis and the 
best combination model, a combination of two vegetation indices or two textural images 
provided the best results for vegetation separability. Three or more vegetation indices or 
textural images did not significantly improve vegetation separability; a  similar conclu-
sion was reached in our previous research (Lu et al. 2008b). Therefore, the best combina-
tion for two vegetation indices is TC2 and ND42-57, and the best combination for two 
best textural images is TM2-DIS and TM4-DIS (dissimilarity based on TM bands 2 and 4). 
Figure 9.3 provides the comparison of TM spectral bands, two selected  vegetation indi-
ces, and two textural images, showing the different features for vegetation types, espe-
cially the textural images.

9.4.4.2 Comparison of Classification Results

The comparison of accuracy assessment among different scenarios (see Table 9.2) indi-
cated that although the incorporation of vegetation indices into spectral bands has a lim-
ited role in improving vegetation classification performance, it is helpful in improving the 
extraction and separability of pasture, water, and urban land covers; in contrast, the incor-
poration of textural images into spectral bands was valuable for improving vegetation 
classification performance, especially for upland forest, flooding forest, and intermediate 
and advanced succession classes. This research indicates that the incorporation of both 
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TAble 9.2

Comparison of Accuracy Assessment Results with MLC among Different Scenarios

Land-Cover types

6SB 6SB and 2VI 6SB and 2tX
6SB and 2VI and 

2tX

PA UA PA UA PA UA PA UA

Upland forest 37.04 95.24 24.07 92.86 66.67 78.26 66.67 78.26
Flooding forest 93.75 50.00 100.00 41.03 100.00 66.67 100.00 69.57
Liana forest 95.45 66.67 95.45 63.64 81.82 66.67 84.09 69.81
SS1 84.00 61.76 80.00 64.52 92.00 57.50 92.00 58.97
SS2 67.86 90.48 67.86 86.36 78.57 95.65 82.14 92.00
SS3 89.66 74.29 86.21 75.76 79.31 85.19 86.21 89.29
Pasture 83.33 94.83 86.36 95.00 75.76 96.15 77.27 98.08
Water 68.18 100.00 95.45 100.00 72.73 100.00 95.45 100.00
Nonvegetated 
wetland

53.85 100.00 69.23 90.00 69.23 100.00 53.85 87.50

Urban 100.00 71.05 100.00 100.00 100.00 79.41 100.00 100.00
Burn scars 100.00 87.50 92.86 86.67 92.86 100.00 100.00 87.50
Overall accuracy 77.22 77.51 80.18 82.84
Kappa 
coefficient

0.7446 0.7485 0.7770 0.8071

6SB represents TM six spectral bands; 6SB and 2VI represent the combination of six spectral bands and two veg-
etation indices; 6SB and 2TX represent the combination of six spectral bands and two textural images; and 6SB 
and 2VI and 2TX represent the combination of six spectral bands, two vegetation indices, and two textural images. 
PA and UA represent producer’s accuracy and user’s accuracy.

a b c

d e f

5
km

FIguRe 9.3
A comparison of thematic mapper (TM) bands 4 and 5, two vegetation indices, and two textural images. (a) and 
(b) TM bands 4 and 5; (c) and (d) the second component from tasseled cap transformation and the vegetation 
index based on bands 4, 2, 5, and 7; and (e) and (f) textural images based on dissimilarity on band 2 and band 4 
and a window size of 9 × 9 pixels.
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vegetation indices and textural images into spectral bands provides the best classification 
performance. Figure 9.4 provides a comparison of classification results among the four 
scenarios. It indicates that the use of textural images can reduce the  salt-and-pepper effect 
in the classification image, which is often produced with the per-pixel-based classification 
method.

9.4.5 Summary of the Case Study

This study indicates the importance of textural images in improving vegetation classifica-
tion accuracies. A critical step is to identify suitable textural images that can provide the 
best separability for specified classes. For the selection of a single textural image, one can 
select the textural image with the highest separability, but for the selection of two or more 
textural images, a method based on comparing the standard deviation and correlation 
coefficients between the images provides an easy way to identify a suitable combination.

9.5 Final Remarks

Image classification has made great progress over the past decades in the following three 
areas: (1) development and use of advanced classification algorithms, such as subpixel, 
per-field, and knowledge-based classification algorithms; (2) use of multiple remote sens-
ing features, including spectral, spatial, multitemporal, and multisensor information; and 
(3) incorporation of ancillary data into classification procedures, including such data as topo-
graphic, soils, roads, and census data. Spectral features are the most important information 

Forest
SS

Pasture
Water

Wetland
Urban Burn scar km

5

a b

c d

FIguRe 9.4
(See color insert following page xxx.) Comparison of classification results among different scenarios with 
the maximum likelihood classifier: (a) six Thematic Mapper spectral bands, (b) combination of spectral bands 
and two vegetation indices, (c) combination of spectral bands and two textural images, and (d) combination of 
spectral bands, two vegetation indices, and two textural images.
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required for image classification. As spatial resolution increases, how to effectively use the 
spatial information inherent in the image becomes an important question to be consid-
ered. Thus, object-, texture-, or contextual-based methods have attracted increased atten-
tion (Lam 2008; Blaschke 2010; Ghimire, Rogan, and Miller 2010). Classification approaches 
may vary with different types of remote sensing data. In high spatial resolution data such 
as those from IKONOS and QuickBird, the high spectral variation within the same land-
cover class poses a challenge. A combination of spectral and textural information and the 
use of per-field or object-oriented classification algorithms can reduce this problem. For 
medium and coarse spatial resolution data, mixed pixels are a problem, resulting in poor 
area estimation for classified images when per-pixel classifiers are used. Thus, subpixel 
features from spectral mixture analysis or fuzzy membership have been used in image 
classification. Moreover, image data have been integrated with ancillary data as another 
means for enhancing image classification in which GIS plays an important role. When mul-
tisource data are used in a classification, parametric classification algorithms such as MLC 
are typically not appropriate. Advanced nonparametric classifiers, such as neural network, 
decision tree, and evidential reasoning, or the knowledge-based approach appear to be the 
most appropriate choices.

The success of an image classification depends on many factors. The availability of high-
quality remotely sensed imagery and ancillary data, design of a proper classification pro-
cedure, and skills and experiences of the analyst are most important. For a particular study, 
it is often difficult to identify the best classifier due to a lack of guidelines for classifier 
selection and the unavailability of suitable classification algorithms at hand. Comparative 
studies of different classifiers are thus frequently conducted. Moreover, the combination of 
different classification approaches has been shown to be helpful for improving classifica-
tion accuracy. Future research is necessary to develop guidelines for the applicability and 
capability of major classification algorithms.
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