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Abstract
High spatial resolution images have been increasingly used for
urban land-use/land-cover classification, but the high spectral
variation within the same land-cover, the spectral confusion
among different land-covers, and the shadow problem often
lead to poor classification performance based on the tradi-
tional per-pixel spectral-based classification methods. This
paper explores approaches to improve urban land-cover
classification with QuickBird imagery. Traditional per-pixel
spectral-based supervised classification, incorporation of
textural images and multispectral images, spectral-spatial
classifier, and segmentation-based classification are examined
in a relatively new developing urban landscape, Lucas do Rio
Verde in Mato Grosso State, Brazil. This research shows that
use of spatial information during the image classification
procedure, either through the integrated use of textural and
spectral images or through the use of segmentation-based
classification method, can significantly improve land-cover
classification performance.

Introduction
Landsat images may be the most common data source for
land-use/land-cover classification, even in the study of urban
landscapes because of the Landsat program’s relatively long
history of space-based data collection at global scale. How-
ever, the relatively coarse spatial resolution often cannot
meet specific project requirements of urban land-use/land-
cover classification, especially in a complex urban-rural
interface (Jensen and Cowen, 1999; Lu and Weng, 2005). In
the recent decade, urban researchers have advocated the use
of high spatial resolution images (better than 5 m spatial
resolution), such as Ikonos and QuickBird, for different
applications such as land-use/land-cover classification and
impervious surface mapping in urban areas (Sugumaran
et al., 2002; Goetz et al., 2003; van der Sande et al., 2003; Xu
et al., 2003; Wang et al., 2004; Lu and Weng, 2009). A major
advantage of these high spatial resolution images is that such
data greatly reduce the mixed-pixel problem (Lu and Weng,
2009), providing a greater potential to extract much more
detailed information on land-cover structures than medium
or coarse spatial resolution data. However, some new
problems associated with the high spatial resolution images
emerge, notably the shadows caused by topography, tall
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buildings, and trees (Asner and Warner, 2003; Zhou et al.,
2008; Lu and Weng, 2009), and the high spectral variation
within the same land-cover class. These disadvantages may
lower classification accuracy if the classification procedure
cannot effectively handle them (Irons et al., 1985; Cushnie,
1987). This produces a challenge in selecting suitable
classification algorithms and image processing methods.

The heterogeneity in urban landscapes often results in
high spectral variation within the same land-cover class in
high spatial resolution images. As illustrated in Plate 1
which is a false color composite of QuickBird bands 4, 3,
and 2 (assigned as red, green, and blue, respectively) with
0.6 m spatial resolution, the spectral signatures for different
kinds of impervious surfaces (appearing as different colors),
such as roads, building roofs, and parking lots, vary consid-
erably. Also shadows from tall buildings or from tree crowns
significantly reduce the spectral values of the true land-cover
under the shadows, resulting in inaccuracies in land-cover
classification. When per-pixel spectral-based classifiers are
used for land-cover classification, each pixel is individually
grouped into a certain category, and the results will be noisy
due to high spatial frequency in the landscape. In order to
reduce the heterogeneity problem, different methods, such as
use of textures in classification and object-oriented classifiers
have been examined (Shaban and Dikshit, 2001; Zhang et al.,
2003; Walter, 2004; Puissant et al., 2005; Yu et al., 2006;
Mathieu et al., 2007; Agüera et al., 2008; Mallinis et al.,
2008; Zhou et al., 2008; Pacifici et al., 2009).

Texture often refers to the pattern of variation in intensity
in an image. In previous research, many texture measures
have been developed (Haralick et al., 1973; He and Wang,
1990; Unser, 1995) and are mainly used for land-use/land-
cover classification (Franklin and Peddle, 1989; 1990; Marceau
et al., 1990; Augusteijn et al., 1995; Hay et al., 1996; Herold
et al., 2003; Yu et al., 2006). For example, Shaban and Dikshit
(2001) investigated grey-level co-occurrence matrix, grey-level
difference histogram, and sum and difference histogram
textures from SPOT spectral data in an Indian urban environ-
ment, and found that a combination of texture and spectral
features improved the classification accuracy. Compared to
the obtained result based solely on spectral features, about
9 percent and 17 percent improvements were achieved using
additional one and two textures, respectively. They further
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found that contrast, entropy, variance, and inverse difference
moment provided higher accuracy and that the best sizes of
moving window were 7  7 and 9  9. In practice, it is often
difficult to identify a suitable texture because texture varies
with the characteristics of the landscape under investigation
and the image data used. Identification of suitable textures
involves the determination of a texture measure, image band,
the size of moving window, and other parameters (Franklin
et al., 1996; Chen et al., 2004). The difficulty in identifying
suitable textures and the computation cost for calculating
textures limit extensive use of textures in image classification.

Because per-pixel spectral-based methods cannot effec-
tively solve the high spectral variation problem within the
same land-cover, object-oriented classification methods have
been regarded as a good choice to reduce this problem
(Thomas et al., 2003; Benz et al., 2004; Laliberte et al., 2004;
Jensen, 2004; Yu et al., 2006; Mathieu et al., 2007; Stow
et al., 2007; Jacquin et al., 2008; Mallinis et al., 2008; Zhou
et al., 2008). Two stages are involved in an object-oriented
classification: image segmentation and classification (Jensen,
2004). Image segmentation merges pixels into objects, and a
classification is then implemented based on those objects
instead of the individual pixels. In the process of creating
objects, scale determines the occurrence or absence of an
object class, and the size of an object affects a classification

result (Jensen, 2004). This approach has proven to be able to
provide better classification results than per-pixel classifica-
tion approaches, especially for high spatial resolution data
(Thomas et al., 2003; Laliberte et al., 2004; Wang et al., 2004;
Mallinis et al., 2008). The eCognition® (renamed as Definiens)
method is so far the most commonly used object-oriented
classification (Benz et al., 2004, Wang et al., 2004; Yu et al.,
2006; Jacquin et al., 2008).

In order to improve land-cover classification with high
spatial resolution images, one critical issue is to make use of
spatial information inherent in high spatial resolution
images while reducing the high spectral variation within the
same land-cover class. The incorporation of texture and
spectral bands, and the use of object-oriented classification
methods have been explored (Yu et al., 2006). However,
how to effectively use spatial information is still poorly
understood. It is valuable to conduct a comparative analysis
of different methods in order to identify a suitable method
for urban land-cover classification. Therefore, this research
selected a complex urban-rural frontier, i.e., Lucas do Rio
Verde in Mato Grosso State, Brazil, as a case study and used
QuickBird imagery to explore the integrated use of textural
and spectral images, the spectral-spatial classifier, and the
segmentation-based method, in order to identify a suitable
classification procedure for urban land-cover classification.

Plate 1. Image false color composite consisting of QuickBird bands 4, 3, and 2
by assigning as red, green and blue respectively, showing the complexity of 
land-use/land-cover features in the high spatial resolution image



A Brief Introduction of Selected Classification Methods
Maximum Likelihood Classifier
Maximum likelihood classifier (MLC) is a parametric classi-
fier that assumes normal or near normal spectral distribution
for each feature of interest. An equal prior probability
among the classes is also assumed. This classifier is based
on the probability that a pixel belongs to a particular class.
It takes the variability of classes into account by using the
covariance matrix. Therefore, MLC requires sufficient number
of representative training samples for each class to accu-
rately estimate the mean vector and covariance matrix
needed by the classification algorithm (Hubert-Moy et al.,
2001; Chen and Stow, 2002; Landgrebe, 2003; Mather, 2004).
When the training samples are limited or non-representative,
inaccurate estimation of the mean vector and covariance
matrix often results in poor classification results. A detailed
description of MLC can be found in many textbooks (e.g.,
Richards and Jia, 1999; Lillesand and Kiefer, 2000; Jensen,
2004). MLC may be the most common classifier used in
practice because of its sound theory and its ubiquitous
nature in commercial image processing software.

ECHO
Extraction and Classification of Homogeneous Objects
(ECHO) is a multistage spectral-spatial classifier that
combines spectral and spatial/textural features (Kettig and
Landgrebe, 1976; Landgrebe, 1980; Biehl and Landgrebe,
2002). Four stages are involved during the classification:
(a) an analyst defines partitions within the feature space
(2  2, 3  3, 4  4, etc.) that creates multipixel cells;
(b) an analyst sets thresholds to determine the homogene-
ity of pixels within each cell. After processing, each cell is
then either considered a single multipixel entity where
individual pixel spectral statistics are merged or they
function as individual pixels just located within a cell’s
coordinates; (c) full cells and individual pixels within
some cells are aggregated based on spectral statistical
associations between them; and (d) the aggregations of

cells of pixels and single pixels are processed by a MLC to
provide the final results. Our previous research for land-
cover classification in the Brazilian Amazon based on
Landsat TM images has shown that ECHO can provide better
classification accuracy than MLC (Mausel et al., 1993; Lu
et al., 2004). This research used ECHO to classify QuickBird
imagery in a complex urban-rural frontier.

Segmentation-based Classification
Image segmentation is the partitioning of raster images into
spatially continuous, disjointed, and homogeneous regions,
i.e., segments, based on pixel values and locations (Blashke
et al., 2004; Jensen, 2004). The pixels having similar spectral
values that are spatially connected are grouped in a single
segment. One critical step in this method is to develop a
segmentation image, which is often based on pixel, edge,
and region methods (Blaschke et al., 2004; Yu et al., 2006).
In this research, the edge-based segmentation method is
used to produce segmentation images based on QuickBird
multispectral images. The major steps include: (a) producing
segmentation image from the QuickBird multispectral image
using SEGMENTATION function in the ERDAS Imagine®;
(b) converting the segmentation image into vector format
image and removing the segments with small areas using
ArcGIS®; (c) extracting the mean spectral value of each
segment for each band; (d) conducting supervised classifica-
tion for the mean-spectral value image; (e) recoding the
classified image according to the selected classification
scheme; and (f) conducting accuracy assessment.

Study Area and Data Set
Brief Description of the Study Area
Lucas do Rio Verde (hereafter called simply Lucas) in Mato
Grosso State, Brazil has a relatively short history and small
urban extent. It was established in the early 1980s (see
Figure 1) and has experienced a rapid urbanization. High-
way BR-163 runs through Lucas and connects the region to
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Figure 1. Study area: Lucas do Rio Verde, Mato Grosso State, Brazil.



the Amazon River port city of Santarém and to the heart of
the soybean growing area at Cuiabá. The economic base of
Lucas is large-scale agriculture, including the production of
soy, cotton, rice, and corn as well as poultry and swine. The
county is at the epicenter of soybean production in Brazil,
and it is expected to grow in population three-fold in the
next ten years (personal communication with secretariat for
planning at Lucas). Because it is, at present, a relatively yet
small town and has complex urban-rural spatial patterns
derived from its highly capitalized agricultural base, large
silos and warehouses, and planned urban growth, Lucas is
an ideal site to explore the methods to classify a high spatial
resolution image into a thematic map.

Data Set
A QuickBird image, which was acquired on 20 June 2008,
was used in this research for exploring the suitable meth-
ods for land-use/land-cover classification. The QuickBird
imagery has four multispectral bands (blue, green, red, and
near-infrared) with 2.4 m spatial resolution and one
panchromatic band (visible wavelength) with 0.6 m spatial
resolution. In order to make full use of both multispectral
and high spatial resolution features inherent in the
remotely sensed data, different data fusion methods such
as intensity-hue-saturation (IHS) transform, principal
component analysis (PCA), and wavelet transform can be
used (Welch and Ehlers, 1987; Solberg et al., 1996; Pohl
and Van Genderen, 1998; Amolins et al., 2007; Dong et al.,
2009). In particular, the wavelet merging technique is
regarded as a good method for preserving the multispectral
features while improving the spatial features in the output
result (Li et al., 2002; Ulfarsson et al., 2003; Lu et al.,
2008). Hence, the wavelet merging technique was used in
this research to merge the QuickBird multispectral bands
and panchromatic band into a new multispectral image
with 0.6 m spatial resolution. The fused image was then
used to examine suitable methods for land-use/land-cover
classification in a complex urban-rural frontier.

Methods
Determination of a Classification System and Selection of Training 
Sample Plots
A suitable classification scheme is required before imple-
menting a land-cover classification. Many factors may affect
the determination of a classification scheme, but the major
concerns are research objectives, user’s needs, characteristics
of the study area, and selected remote sensing data (Lu and
Weng, 2007). In this research, the selected classification
system includes the following land-use/land-cover classes:
forest, impervious surfaces, pasture/grassland, water,
wetland, bare soil, and cropped fields (i.e., harvested fields
with crop residues).

In this study area, impervious surfaces are extremely
complex, as shown in Plate 1. Different impervious surfaces
such as building roofs, roads, and parking lots have different
spectral signatures, and are confused with other land-covers
such as bare soils, water, wetland, and crop residuals due to
their similar spectral signatures. Another important factor
that affects land-cover classification performance is the
shadow problem, i.e., shadows cast by buildings and tree
crowns, reducing the spectral values of the true land-cover
under the shadows. Therefore, proper selection of training
sample plots is critical for the land-cover classification. Since
impervious surfaces have large spectral variation, no single
class can represent all impervious surface materials. Thus,
different impervious surface training sample classes were
selected, representing low-, medium-, and high-spectral-value

impervious surfaces, dirty roads, parking lots, and shadowed
impervious surface. Other land-covers include upland forest,
riverine forest, agroforestry, grassland/pasture, bare soils,
shadows in vegetated areas, cropped fields, water, and non-
forest wetlands. At least 15 sample plots for each training
class were selected, based on visual interpretation on the
QuickBird false color composite. A transformed divergence
algorithm was used to examine the separability of the land-
cover classes and then to further refine the selected training
samples. The same training samples were used for the
different classification methods investigated here.

Selection of Suitable Textural Images
Many texture measures are available, but it is a challenge to
identify suitable textural images for a specific study area,
because a good texture is a comprehensive combination of a
texture measure, window size, image band, quantization
level, and the inter-pixel distance (Shaban and Dikshit,
2001; Lu and Weng, 2007; Pacifici et al., 2009), and is also
related to characteristics of the landscape under investiga-
tion. In practice, grey-level co-occurrence matrix (GLCM)
based texture measures are often used (Yu et al., 2006;
Agüera et al., 2008). Based on literature review and our
previous experiences (Lu and Weng, 2005 and 2007), four
GLCM-based texture measures (i.e., mean, homogeneity,
dissimilarity, and second moment) with three different
window sizes (9  9, 15  15, and 21  21) were tested,
based on the QuickBird red and near-infrared (NIR) bands.
The same training samples were used to examine which
textural image or images had better separability based on the
transformed divergence analysis. The textural images having
best separability performance were then incorporated into
multispectral images for land-cover classification.

Development of Segmentation-based Mean Spectral Value Images
In the QuickBird images, there exists high data redundancy
between visible bands such as between bands 1 and 2 (the
correlation coefficient is 0.98) in this study. Because of the
large volume data sets in the QuickBird images and the
time required for image processing, band 1 was not used
during the extraction of the segmentation image. In this
research, the segmentation function provided by ERDAS
Imagine® was used to produce segmentation image. During
the production of the segmentation image, it is important
to identify suitable thresholds for edge detection and for
the determination of the difference between neighboring
segments. Therefore, different thresholds ranging from
20, 30, 40, 50, until 60 for edge detection and different
parameter values of the minimum value difference ranging
from 15, 25, 30, to 40 for determining whether the pixels
belonged to the same segment or not were examined for the
16-bit integer format QuickBird images. Based on the
examination of segmentation images, an edge detection
threshold of 50 and the minimum value difference of
30 were finally used in this research. The segmentation
image was converted to vector format and those segments
with very small areas were merged to the neighbor segment.
The modified segmentation image was then linked to
QuickBird spectral bands to extract a mean spectral value
for each segment in each band separately.

Implementation of the Land-use/Land-cover Classification
The same training samples were used for land-cover classifi-
cation with different methods. The following four classifica-
tion strategies were designed: (a) MLC based on QuickBird
bands 2, 3, and 4 images; (b) MLC based on the combination
of QuickBird band 2, 3, and 4 and two textural images;
(c) ECHO based on QuickBird bands 2, 3, and 4 images;
and (d) MLC based on segmentation-based mean-spectral
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value images of bands 2, 3, and 4. After classification, the
land-cover classes were then recoded according to the
selected classification scheme.

Accuracy Assessment
Accuracy assessment is often required for evaluating the
quality of land-cover classification results or for identifying
a suitable classification method by comparing different
classification results in a study area. The error matrix
approach is most frequently used in accuracy assessment
(Foody, 2002). Other important accuracy assessment ele-
ments, such as overall classification accuracy (OCA), pro-
ducer’s accuracy (PA), user’s accuracy (UA), and kappa
coefficient (KC), can be derived from the error matrix.
Previous literature has defined the meanings and provided
computation methods for these elements (Congalton and
Mead, 1983; Hudson and Ramm, 1987; Congalton, 1991;
Janssen and van der Wel, 1994; Congalton and Plourde,
2002; Foody, 2002; Congalton and Green, 2008). In this
research, a total of 300 test samples were randomly selected.
The analyst examined the test sample plots and assigned a
class value to each. The accuracy assessment was conducted
for each classification result.

Results
Selection of Suitable Textural Images
The transformed divergence analysis based on training
samples indicated that use of two textural images provided

sufficiently good separability. Adding more textural images
did not significantly improve the land-cover separability
(Shaban and Dikshit, 2001; Lu et al., 2008), but did
increase the data volume because of the high spatial
resolution. Window size is an important factor affecting the
role of textural images in land-cover classification. Too
large a window size requires much more time for computa-
tion and also smoothes the textural images thereby reduc-
ing the separability of boundaries. As shown in Figure 2,
the textural image with a large window size of the same
texture measure from red-band image over-extracted
impervious surface classes, especially the linear features
(see Figure 2c and 2d). Based on the analysis of trans-
formed divergence, two textural images based on mean and
dissimilarity with a window size of 9  9 pixels on the
QuickBird red-band image were finally selected. The low
correlation coefficient between mean and dissimilarity
textural images indicates that they have low data redun-
dancy and have high complementary information, thus,
both textural images were incorporated into multispectral
image for land-cover classification.

Comparison of the Different Classification Methods
The role of textural images in improving land-use/land-cover
classification accuracy is obvious, as shown in Table 1. The
addition of textural images improved the accuracy of each
land-cover class, especially wetland, bare soil, and cropped
fields. Comparing the result from the combination of spectral
and textural images with that from the pure spectral images,
overall classification accuracy was improved by 11.7 percent
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Figure 2. Comparison of textural images: (a) red-band image, (b), (c), and (d) textural images derived
with dissimilarity texture measure on the red-band images with three window sizes of 9  9, 15 
15, and 21  21 pixels, respectively.



and overall kappa coefficient by 0.14. In the classification
result from the MLC based on per-pixel spectral signatures,
major land-cover misclassification errors involved spectral
confusion among wetland, dark impervious surfaces, and
shadows from buildings or from tree crowns, and among
pasture/grassland, cropped fields, bare soils, and impervious
surfaces. As an example, Figure 3 shows the complexity of
impervious surfaces and the spectral similarity with water,
wetland, and shadows indicating the difficulty in separating
them based on spectral signatures. Therefore, per-pixel
spectral-based supervised classification cannot effectively
separate these land-covers based on pure spectral signatures
alone. However, different land-cover classes have their own
spatial patterns and characteristics. In particular, high spatial
resolution images have rich spatial information that can be
used for classification. As Table 1 indicated, texture is an
effective method to generate a new data set by extracting
spatial information in the new image. Another method is to
use the spatial information by incorporating the spectral and
spatial information in a classifier such as ECHO, as used in
this paper. Comparing the MLC-based classification result, the
ECHO improved overall land-cover classification accuracy by
6 percent.

Comparing the classification accuracies between using
segmentation-based mean-spectral images and using per-pixel
spectral-based multispectral images indicated that segmenta-
tion-based method significantly improved classification
performance for all land-covers. Overall classification accu-
racy was increased by 12.7 percent and the kappa coefficient
by 0.15. This implies that reducing spectral variation within
the same land-cover through using segmentation is valuable.
Figure 4 shows the comparison of segmentation-based mean-
spectral red-band image and corresponding original red-band
image, showing the homogenous features within the same
land-cover. Analyzing the classification images (see Plate 2)
indicated that MLC based on multispectral images gave a large
number of “salt-and-pepper” outputs and had many misclassi-
fications, but the other three methods significantly reduced
this problem. In particular, the use of texture and segmenta-
tion provided the best classification performance. This
implies that use of spatial information, either through the
incorporation of textural and spectral images, segmentation,
or a spatial-spectral classifier, can improve land-cover
classification performance.
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TABLE 1. A COMPARISON OF ACCURACY ASSESSMENT RESULTS AMONG DIFFERENT METHODS

Maximum likelihood classifier
ECHO Segmentation-based Method

Land-cover Spectral Image Spectral and Texture

PA UA KC PA UA KC PA UA KC PA UA KC

Forest 92.45 71.01 0.65 95.08 89.23 0.86 87.50 87.50 0.85 90.57 90.31 0.89
ImpS 95.12 76.47 0.73 90.91 85.11 0.83 77.78 81.40 0.78 87.80 92.31 0.91
Pas-Gra 75.00 62.26 0.56 74.47 77.78 0.74 74.36 67.44 0.63 75.00 71.74 0.67
Water 70.97 100.00 1.00 80.00 100.00 1.00 90.32 93.33 0.93 96.77 100.00 1.00
Wetland 31.03 52.94 0.48 88.89 72.73 0.71 96.30 76.47 0.74 100.00 82.86 0.81
Bare 69.70 82.14 0.80 87.10 93.10 0.92 85.00 53.13 0.50 93.94 86.11 0.84
Fields 75.36 86.67 0.83 89.86 91.18 0.89 74.39 98.39 0.98 84.06 95.08 0.94

OCA 75.67 87.33 81.67 88.33

OKC 0.71 0.85 0.78 0.86

Note: PA, UA, and KC represent producer’s accuracy, user’s accuracy, and kappa coefficient for each land-cover class; OCA and
OKC represent overall classification accuracy and overall kappa coefficient. ImpS and Pas-Gra represent impervious surfaces and
pasture/grass land

Figure 3. A comparison of spectral signatures among low
reflectance objects, illustrating the difficulty in separating
land-cover classes based on spectral signatures.



Discussion
The high spatial resolution in the QuickBird image often
lead to high spectral variation within the same land-cover
class, and the limited number of spectral bands, including
the lack of a shortwave infrared band, leads to a high rate
of spectral confusion, resulting in poor classification
performance based on per-pixel spectral-based classification
methods. Reducing the spectral variation within the same
land-covers and increasing the separability of different land-
covers are the keys to improving land-cover classification
(Lu and Weng, 2007). As this research indicates, the use of
texture, segmentation, or a spectral-spatial classifier are
effective methods for improving land-cover classification
performance when high spatial resolution images are used
in a complex urban landscape. Texture not only reduces the
spectral variation within the same land-cover but also
improves the spectral separability among different land-
covers, thus incorporation of texture is an effective way to
improve classification performance (Agüera et al., 2008; Lu
et al., 2008). The difficulty is to identify suitable textures
because a good texture is dependent on the proper determi-
nation of the texture measure, image band, and window
size for the specific study (Chen et al., 2004). There are so
many potential textures available, it is important to use
suitable rules to conduct the texture selection (Lu and
Weng, 2007; Lu et al., 2008). In this research, the selection
of textural images is based on the separability analysis with
the transformed divergence on the training samples and has
shown its success in improving land-use/land-cover classifi-
cation accuracy.

In addition to the use of textural images, selection of
suitable classification methods can also improve classifica-
tion performance (Lu et al., 2004). In the high spatial
resolution images, one important factor to improve land-
cover classification performance is to reduce the spatial
variation within the same land-covers. Traditional per-pixel
spectral-based supervised classification is only based on

spectral signatures, but does not make use of rich spatial
information inherent in the high spatial resolution images.
This research has shown that the use of spatial information
in the classifier, either in ECHO or segmentation-based
method is an effective way to improve land-cover classifi-
cation performance. One critical issue is to develop a high-
quality segmentation image, depending on the use of
method for segmentation development and the selection of
relevant parameters (Yu et al., 2006; Lu and Weng, 2007;
Mallinis et al., 2008). The selection of the thresholds seems
subjective; mainly depending on the analyst’s experience,
the data range, and the characteristics of land-covers in the
study area. Also no thresholds are optimal for all different
land-covers due to the complexity of the urban landscapes
under investigation. More research is needed to identify
suitable parameter inputs for developing segmentation
images corresponding to the different complexity of urban
landscapes.

Shadow is another important factor reducing the
spectral values of the shaded objects or even total loss of
spectral information, thus influencing the land-cover
classification with digital image processing (Lu and Weng,
2009; Zhou et al., 2009). In high spatial resolution images
such as QuickBird, shadow problem is especially serious as
shown in Plate 1. This impact varies, depending on the
shadowing degree (Lu and Weng, 2009). Although much
research has been conducted to explore the methods for
shadow detection and removal (Dare, 2005; Li et al., 2005;
Lu, 2007; Lu and Weng, 2009; Zhou et al., 2009), it is hard
to eliminate the shadow impacts on land-cover classifica-
tion. To date, there are no existing suitable techniques that
can automatically eliminate the shadow impacts. An easy
and simple method is to identify thresholds to mask out the
pixels under shadow impacts, then classify the spectral
signatures of the shadowed pixels into clusters and the
analyst can make full use of his/her experience and knowl-
edge to merge the clusters into meaningful land-cover
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Figure 4. Comparison of (a) original red-band image, and (b) segmentation-based
mean-spectral red-band image.



classes (Lu and Weng, 2009). Human beings can comprehen-
sively use their knowledge and experience to separate
different land-covers in the shadowed areas in the high
spatial resolution images.

Selecting different seasonal images is helpful in separat-
ing some types of land-cover classes, for example,
pasture/grassland, bare soils, and cropped fields. On the
QuickBird image which was acquired on 20 June 2008,
cropped fields were often confused with impervious surfaces
because crops were harvested and crop residues remained in
the fields. We used another image, acquired on 02 April
2007, when crops were still in the fields. Growing crops and
impervious surfaces have significantly different spectral
signatures in the growing season, thus they can be easily
separated from the different spectral signatures. Therefore,
selection of a suitable acquisition date or the use of different
phenological images is valuable for further improving land-
cover classification accuracy (Sugumaran et al., 2002).
However, because of high spatial resolution, use of multi-

temporal QuickBird images will greatly increase the time
and labor to conduct the image processing, in addition to
the cost increase in image purchase.

Conclusions
The high spectral variation within the same land-cover, the
spectral confusion of different land-covers due to limited
spectral bands and lack of shortwave infrared bands, and
shadow impacts in the QuickBird image make it difficult in
land-cover classification with computer-based automatic
processing methods. Traditional per-pixel spectral-based
supervised classification cannot effectively deal with these
problems, thus the classification results are often unsatisfac-
tory. This research indicates that making full use of spatial
information is important to improve land-cover classification
performance. Incorporation of suitable textural and spectral
images or the use of segmentation-based classification
methods can significantly improve land-cover classification
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Plate 2. A comparison of classified images from different classification methods: 
(a) MLC based on multispectral image, (b) ECHO based on multispectral image, 
(c) segmentation-based method, and (d) combination of multispectral and
textural images)



comparing with traditional per-pixel spectral-based classifi-
cation methods.

Acknowledgments
The authors wish to thank the National Institute of Child
Health and Human Development at NIH (Grant No. R01
HD035811) for the funds that made this study possible.
The study is part of a five-year continuation project
focusing on Population and Environment, which includes
examining changes taking place in urban areas. Any errors
are solely the responsibility of the authors and not of the
funding agencies.

References
Asner, G.P., and A.S. Warner, 2003. Canopy shadow in IKONOS

satellite observations of tropical forests and savannas, Remote
Sensing of Environment, 87:521–533.

Agüera, F., F.J. Aguilar, and M.A. Aguilar, 2008. Using texture
analysis to improve per-pixel classification of very high
resolution images for mapping plastic greenhouses, ISPRS
Journal of Photogrammetry and Remote Sensing, 63:635–646.

Amolins, K., Y. Zhang, and P. Dare, 2007. Wavelet based image
fusion techniques - An introduction, review and comparison,
ISPRS Journal of Photogrammetry and Remote Sensing,
62:249–263.

Augusteijn, M.F., L.E. Clemens, and K.A. Shaw, 1995. Performance
evaluation of texture measures for ground cover identification
in satellite images by means of a neural network classifier, IEEE
Transactions on Geoscience and Remote Sensing, 33:616–625.

Benz, U.C., P. Hofmann, G. Willhauck, I. Lingenfelder, and M.
Heynen, 2004. Multi-resolution, object-oriented fuzzy analysis
of remote sensing data for GIS-ready information, ISPRS Journal
of Photogrammetry and Remote Sensing, 58:239–258.

Biehl, L., and D. Landgrebe, 2002. MultiSpec - A tool for multi-
spectral-hyperspectral image data analysis, Computers and
Geosciences, 28:1153–1159.

Blaschke, T., C. Burnett, and A. Pekkarinen, 2004. Image segmenta-
tion methods for object-based analysis and classification, Remote
Sensing Image Analysis: Including the Spatial Domain (S.M. de
Jong and F.D. van der Meer, editors), Kluwer Academic
Publishers, Netherlands, pp. 211–236.

Chen, D., and D.A. Stow, 2002. The effect of training strategies on
supervised classification at different spatial resolution, Pho-
togrammetric Engineering & Remote Sensing, 68(11):1155–1162.

Chen, D., D.A. Stow, and P. Gong, 2004. Examining the effect of
spatial resolution and texture window size on classification
accuracy: an urban environment case, International Journal of
Remote Sensing, 25:2177–2192.

Congalton, R.G., 1991. A review of assessing the accuracy of
classification of remotely sensed data, Remote Sensing of
Environment, 37:35–46.

Congalton, R.G., and R.A. Mead, 1983. A quantitative method to test
for consistency and correctness in photo interpretation,
Photogrammetric Engineering & Remote Sensing, 49(1):69–74.

Congalton, R.G., and L. Plourde, 2002. Quality assurance and
accuracy assessment of information derived from remotely
sensed data, Manual of Geospatial Science and Technology
(J. Bossler, editor), Taylor & Francis, London, pp. 349–361.

Congalton, R.G., and K. Green, 2008. Assessing the Accuracy of
Remotely Sensed Data: Principles and Practices, Second
edition, CRC Press, Taylor & Francis Group, Boca Raton,
Florida, ISBN 978-1-4200-5512-2, 183 p.

Cushnie, J.L., 1987. The interactive effect of spatial resolution and
degree of internal variability within land-cover types on
classification accuracies, International Journal of Remote
Sensing, 8:15–29.

Dare, P.M., 2005. Shadow analysis in high-resolution satellite
imagery of urban areas, Photogrammetric Engineering & Remote
Sensing, 71(2):169–177.

Dong, J., D. Zhuang, Y. Huang, and J. Yu, 2009. Advances in multi-
sensor data fusion: algorithms and applications, Sensor,
9:7771–7784.

Foody, G.M., 2002. Status of land-cover classification accuracy
assessment, Remote Sensing of Environment, 80:185–201.

Franklin, S.E., and D.R. Peddle, 1989. Spectral texture for improved
class discrimination in complex terrain, International Journal of
Remote Sensing, 10:1437–1443.

Franklin, S.E., and D.R. Peddle, 1990. Classification of SPOT HRV
imagery and texture features, International Journal of Remote
Sensing, 11:551–556.

Franklin, S.E., M.A. Wulder, and M.B. Lavigne, 1996. Automated
derivation of geographic window sizes for remote sensing
digital image texture analysis, Computers and Geosciences,
22:665–673.

Goetz, S.J., R.K. Wright, A.J. Smith, E. Zinecker, and E. Schaub,
2003. IKONOS imagery for resource management: Tree cover,
impervious surfaces, and riparian buffer analyses in the mid-
Atlantic region, Remote Sensing of Environment, 88:195–208.

Haralick, R.M., K. Shanmugam, and I. Dinstein, 1973. Textural
features for image classification, IEEE Transactions on Systems,
Man and Cybernetics, SMC-3:610–620.

Hay, G.J., K.O. Niemann, and G.F. McLean, 1996. An object-specific
image-texture analysis of H-resolution forest imagery, Remote
Sensing of Environment, 55:108–122.

He, D.C., and L. Wang, 1990. Texture unit, textural spectrum and
texture analysis, IEEE Transaction on Geoscience and Remote
Sensing, 28:509–512.

Herold, M., X. Liu, and K.C. Clarke, 2003. Spatial metrics and image
texture for mapping urban land-use, Photogrammetric Engineering
& Remote Sensing, 69(9):991–1001.

Hubert-Moy, L., A. Cotonnec, L. Du, A. Chardin, and P. Perez, 2001.
A comparison of parametric classification procedures of
remotely sensed data applied on different landscape units,
Remote Sensing of Environment, 75:174–187.

Hudson, W.D., and C.W. Ramm, 1987. Correct formulation of the
Kappa coefficient of agreement, Photogrammetric Engineering
& Remote Sensing, 53(4):421–422.

Irons, J.R., B.L. Markham, R.F. Nelson, D.L. Toll, D.L. Williams, R.S.
Latty, and M.L. Stauffer, 1985. The effects of spatial resolution
on the classification of Thematic Mapper data, International
Journal of Remote Sensing, 6:1385–1403.

Jacquin, A., L. Misakova, and M. Gay, 2008. A hybrid object-based
classification approach for mapping urban sprawl in periurban
environment, Landscape and Urban Planning, 84:152–165.

Janssen, L.F.J., and F.J.M. van der Wel, 1994. Accuracy assessment
of satellite derived land-cover data: A review, Photogrammetric
Engineering & Remote Sensing, 60(4): 419–426.

Jensen, J.R., and D.C. Cowen, 1999. Remote sensing of urban/suburban
infrastructure and socioeconomic attributes, Photogrammetric
Engineering & Remote Sensing, 65(6):611–622.

Jensen, J.R., 2004. Introductory Digital Image Processing: A Remote
Sensing Perspective, Third edition, Prentice Hall, Upper Saddle
River, New Jersey., 526 p.

Kettig, R.L., and D.A. Landgrebe, 1976. Computer classification of
remotely sensed multispectral image data by extraction and
classification of homogeneous objects, IEEE Transactions on
Geoscience Electronics, GE-14:19–26.

Laliberte, A.S., A. Rango, K.M. Havstad, J.F. Paris, R.F. Beck,
R. McNeely, and A.L. Gonzalez, 2004. Object-oriented image
analysis for mapping shrub encroachment from 1937 to 2003
in southern New Mexico, Remote Sensing of Environment,
93:198–210.

Landgrebe, D.A., 1980. The development of a spectral-spatial
classifier for Earth observational data, Pattern Recognition,
12:165–175.

Landgrebe, D.A., 2003. Signal Theory Methods in Multispectral
Remote Sensing, John Wiley & Sons, Hoboken, New Jersey,
508p.

Li, S., J.T. Kwok, and Y. Wang, 2002. Using the discrete wavelet
frame transform to merge Landsat TM and SPOT panchromatic
images, Information Fusion, 3:17–23.

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Oc t obe r  2010 1167



Li, Y., P. Gong, and T. Sasagawa, 2005. Integrated shadow removal
based on photogrammetry and image analysis, International
Journal of Remote Sensing, 26(18):3911–3929.

Lillesand, T.M., and R.W. Kiefer, 2000. Remote Sensing and Image
Interpretation, Fourth edition, John Wiley & Sons, New York,
724 p.

Lu, D., 2007. Detection and substitution of clouds/hazes and their
cast shadows on IKONOS images, International Journal of
Remote Sensing, 28(18):4027–4035.

Lu, D., P. Mausel, M. Batistella, and E. Moran, 2004. Comparison of
land-cover classification methods in the Brazilian Amazon
basin, Photogrammetric Engineering & Remote Sensing,
70(7):723–731.

Lu, D., and Q. Weng, 2005. Urban classification using full spectral
information of Landsat ETM� imagery in Marion County,
Indiana, Photogrammetric Engineering & Remote Sensing,
71(12):1275–1284.

Lu, D., and Q. Weng, 2007. A survey of image classification methods
and techniques for improving classification performance,
International Journal of Remote Sensing, 28(5):823–870.

Lu, D., M. Batistella, E. Moran, and E.E. de Miranda, 2008. A
comparative study of Landsat TM and SPOT HRG images for
vegetation classification in the Brazilian Amazon, Photogram-
metric Engineering & Remote Sensing, 70(3):311–321.

Lu, D., and Q. Weng, 2009. Extraction of urban impervious surface
from an IKONOS image, International Journal of Remote
Sensing, 30(5):1297–1311.

Mallinis, G., N. Koutsias, M. Tsakiri-Strati, and M. Karteris, 2008.
Object-based classification using QuickBird imagery for
delineating forest vegetation polygons in a Mediterranean test
site, ISPRS Journal of Photogrammetry and Remote Sensing,
63:237–250.

Marceau, D.J., P.J. Howarth, J.M. Dubois, and D.J. Gratton, 1990.
Evaluation of the grey-level co-occurrence matrix method for
land-cover classification using SPOT imagery, IEEE Transactions
on Geoscience and Remote Sensing, 28:513–519.

Mather, P.M., 2004. Computer Processing of Remotely-Sensed
Images: An Introduction, Third edition, John Wiley & Sons Ltd,
Chichester, U.K., 339 p.

Mathieu, R., J. Aryal, and A.K. Chong, 2007. Object-based classifica-
tion of IKONOS imagery for mapping large-scale vegetation
communities in urban areas, Sensors, 7:2860–2880.

Mausel, P., Y. Wu, Y. Li, E.F. Moran, and E.S. Brondízio, 1993.
Spectral identification of succession stages following deforestation
in the Amazon, Geocarto International, 8:61–72.

Pacifici, F., M. Chini, and W.J. Emery, 2009. A new network approach
using multi-scale textural metrics from very high-resolution
panchromatic imagery for urban land-use classification, Remote
Sensing of Environment, 113:1276–1292.

Pohl, C., and J.L. van Genderen, 1998. Multisensor image fusion in
remote sensing: concepts, methods, and applications, Interna-
tional Journal of Remote Sensing, 19:823–854.

Puissant, A., J. Hirsch, and C. Weber, 2005. The utility of texture
analysis to improve per-pixel classification for high to very high
spatial resolution imagery, International Journal of remote
Sensing, 26:733–745.

Richards, J.A., and X. Jia, 1999. Remote Sensing Digital Image
Analysis: An Introduction, Third edition, Springer-Verlag,
Berlin, Germany, 363 p.

Shaban, M.A., and O. Dikshit, 2001. Improvement of classification
in urban areas by the use of textural features: The case study of

Lucknow city, Uttar Pradesh, International Journal of Remote
Sensing, 22: 565–593.

Solberg, A.H.S., T. Taxt, and A.K. Jain, 1996. A Markov random field
model for classification of multisource satellite imagery, IEEE
Transactions on Geoscience and Remote Sensing, 34:100–112.

Stow, D., A. Lopez, C. Lippitt, S. Hinton, and J. Weeks, 2007.
Object-based classification of residential land-use within Accra,
Ghana based on QuickBird satellite data, International Journal
of Remote Sensing, 28:5167–5173.

Sugumaran, R., D. Zerr, and T. Prato, 2002. Improved urban land-
cover mapping using multitemporal IKONOS images for local
government planning, Canadian Journal of Remote Sensing, 28:
90–95.

Thomas, N., C. Hendrix, and R.G. Congalton, 2003. A comparison of
urban mapping methods using high-resolution digital imagery,
Photogrammetric Engineering & Remote Sensing, 69(9):
963–972.

Ulfarsson, M.O., J.A. Benediktsson, and J.R. Sveinsson, 2003. Data
fusion and feature extraction in the wavelet domain, International
Journal of Remote Sensing, 24:3933–3945.

Unser, M., 1995. Texture classification and segmentation using
wavelet frames, IEEE Transactions on Image Processing,
4:1549–1560.

Van der Sande, C.J., S.M. de Jong, and A.P.J. de Roo, 2003. A
segmentation and classification approach of IKONOS-2 imagery
for land-cover mapping to assist flood risk and flood damage
assessment, International Journal of Applied Earth Observation
and Geoinformation, 4:217–229.

Walter, V., 2004. Object-based classification of remote sensing data
for change detection, ISPRS Journal of Photogrammetry and
Remote Sensing, 58:225–238.

Wang, L., W.P. Sousa, P. Gong, and G.S. Biging, 2004. Comparison
of IKONOS and QuickBird images for mapping mangrove
species on the Caribbean coast of panama, Remote Sensing of
Environment, 91:432–440.

Welch, R., and M. Ehlers, 1987. Merging multi-resolution SPOT
HRV and Landsat TM data, Photogrammetric Engineering &
Remote Sensing, 53(2):301–303.

Xu, B., P. Gong, E. Seto, and R. Spear, 2003. Comparison of gray-level
reduction and different texture spectrum encoding methods for
land-use classification using a panchromatic IKONOS image,
Photogrammetric Engineering & Remote Sensing, 69(5):529–536.

Yu, Q., P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schi-
rokauer, 2006. Object-based detailed vegetation classification
with airborne high spatial resolution remote sensing imagery,
Photogrammetric Engineering & Remote Sensing, 72(7):799–811.

Zhang, Q., J. Wang, P. Gong, and P. Shi, 2003. Study of urban
spatial patterns from SPOT panchromatic imagery using textural
analysis, International Journal of Remote Sensing,
24:4137–4160.

Zhou, W., A. Troy, and J.M. Grove, 2008. Object-based land-cover
classification and change analysis in the Baltimore metropolitan
area using multi-temporal high resolution remote sensing data,
Sensors, 8:1613–1636.

Zhou, W., G. Huang, A. Troy, and M.L. Cadenasso, 2009. Object-
based land-cover classification of shaded areas in high spatial
resolution imagery of urban areas: A comparison study, Remote
Sensing of Environment, 113:1769–1777.

(Received 19 August 2009; accepted 02 November 2009; final
version 26 January 2010)

1168 Oc t obe r  2010 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING



 

ACT Publications 2009 

 
No. 09-01  
Batistella, M., D.S. Alves, E.F. Moran, C. Souza Jr., R. Walker, and S.J. Walsh. People and Environment in Amazonia: 
The LBA Experience and Other Perspectives. In Amazonia and Global Change.  M. Keller, M. Bustamante, J. Gash, and 
P.S. Dias, eds. Geophysical Monograph Series 186. Pp. 1-9. 
 
No. 09-02 
Brondizio, E.S., A. Cak, M.M. Caldas, C. Mena, R. Bilsborrow, C.T. Futemma, T. Ludewigs, E.F. Moran and M. Batistella. 
Small Farmers and Deforestation in Amazonia. In Amazonia and Global Change. M. Keller, M. Bustamante, J. Gash, and 
P.S. Dias, eds. Geophysical Monograph Series 186. Pp.117-124. 
 
No. 09-03 
Weng, Q. and D. Lu.  Landscape as a Continuum: An Examination of the Urban Landscape Structures and Dynamics of 
Indianapolis City, 1991-2000, by Using Satellite Images. International Journal of Remote Sensing 30(10): 2547-2577.  
 
No.09-04 
Mattos, L., A.D. Didonet, A.J. Baggio, A.T. Machado, E.D. Tavares, H.L.C. Coutinho, J.C. Canuto, J.C.C. Gomes, J.A.A. 
Espindola, J.F. Ribeiro, L.H.O. Wadt, M.F.S. Borba, M.S.A. Kato, M.A. Urchei P.C. Kitamura, R.T.G. Peixoto.  Marco 
Referencial em Agroecologia. Embrapa. 
 
No.09-05 
Weng, Q. and D. Lu. Extraction of Urban Impervious Surfaces from an IKONOS Image. International Journal of Remote 
Sensing 30(5): 1297-1311.  
 
No.09-06 
Mattos, L. and A. Cau. Efetividade do Mecanismo de Desenvolvimento Limpo (MDL) no Contexto das Atividades 
Agroflorestais no Brasil: Uma Análise Crítica. 
 
No.09-07 
Mattos, L. and A. Cau. The Clean Development Mechanism and Agroforestry Activities in the Brazilian Amazon. 
 
No.09-08 
Guedes, G.R., S. Costa and E.S. Brondizio. Revisiting the Hierarchy of Urban Areas in the Brazilian Amazon: A Multilevel 
Approach.  Population and Environment 30:159-192.  
 
No.09-09 
Brondizio, E.S., E. Ostrom and O.R. Young. Connectivity and the Governance of Multilevel Social-Ecological Systems: 
The Role of Social Capital. Annual Review of Environmental Resources 34: 253-278. 
 
No.09-10 
Siren, A.H. and E.S. Brondizio. Detecting Subtle Land Use Change in Tropical Forests. Applied Geography 29: 201-211. 
 
No.09-11 
Andersson, K., T.P. Evans and K.R. Richards. National Forest Carbon Inventories: Policy Needs and Assessment 
Capacity.  Climatic Change 93: 69-101. 
 
No.09-12 
Muehlenbein, M.P. The Application of Endocrine Measures in Primate Parasite Ecology. In Primate Parasite Ecology. 
Dynamics and Study of Host-Parasite Relationships. M.A. Huffman and C.A. Chapman, eds. Cambridge University Press. 
 
No.09-13 
Muehlenbein, M.P. and M. Ancrenaz. Minimizing Pathogen Transmission at Primate Ecotourism Destinations: The Need 
for Input from Travel Medicine. Journal of Travel Medicine 16(4): 229-232. 


	10-01FrontCover
	10.01Landcover_QuickBird_PERS_body
	2009Backcover1

