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1. Introduction

Research on the determinants of land use change and its relationship to vulnerability (broadly
defined), biotic diversity and ecosystem services (e.g. Gullison et al. 2007), health (e.g. Patz et al.
2004) and climate change (e.g. van der Werf et al. 2004) has accelerated. Evidence of this increased
interest is demonstrated by several examples. Funding agencies in the US (National Institutes of
Health, National Science Foundation, National Aeronautics and Space Administration and National
Oceanic and Atmospheric Administration) and around the world have increased their support of land
use science. In addition to research papers in disciplinary journals, there have been numerous edited
volumes and special issues of journals recently (e.g. Gutman et al. 2004; Environment & Planning B
2005; Environment & Planning A 2006; Lambin and Geist 2006; Kok, Verburg and Veldkamp
2007). And in 2006, the Journal of Land Use Science was launched.

Land use science is now at a crucial juncture in its maturation process. Much has been learned,
but the array of factors influencing land use change, the diversity of sites chosen for case studies,
and the variety of modeling approaches used by the various case study teams have all combined to
make two of the hallmarks of science, generalization and validation, difficult within land use
science. This introduction and the four papers in this themed issue grew out of two workshops
which were part of a US National Institutes of Health (NIH) ‘Roadmap’ project. The general idea
behind the NIH Roadmap initiative was to stimulate scientific advances by bringing together
diverse disciplines to tackle a common, multi-disciplinary scientific problem. The specific idea
behind our Roadmap project was to bring together seven multi-disciplinary case study teams,
working in areas that could be broadly classified as inland frontiers, incorporating social, spatial
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 and biophysical sciences, having temporal depth on both the social and biophysical sides, and

having had long-term funding. Early in our Roadmap project, the crucial importance of modeling,
particularly agent-based modeling, for the next phase of land-use science became apparent and
additional modelers not affiliated with any of the seven case studies were brought into the project.
Since agent-based simulations attempt to explicitly capture human behavior and interaction, they
were of special interest.

At the risk of oversimplification, it is worth briefly reviewing selected key insights in land use
science in the past two decades to set the stage for the papers in this themed issue. One of the
earliest realizations, and perhaps most fundamental, was accepting the crucial role that humans
play in transforming the landscape, and concomitantly the distinction drawn between land cover
(which can be seen remotely) and land use (which, in most circumstances, requires in situ
observation; e.g. Turner, Meyer and Skole 1994). The complexity of factors influencing land
use change became apparent and led to a variety of ‘box and arrow’ diagrams as conceptual
frameworks, frequently put together by committees rarely agreeing with one another on all details,
but agreeing among themselves that there were many components (social and biophysical) whose
role needed to be measured and understood.

A series of case studies emerged, recognizing the wide array of variables that needed to be
incorporated, and typically doing so by assembling a multidisciplinary team (Liverman, Moran,
Rindfuss and Stern 1998; Entwisle and Stern 2005). The disciplinary make-up of the team strongly
influenced what was measured and how it was measured (see Rindfuss, Walsh, Turner, Fox and
Mishra 2004; Overmars and Verburg 2005), with limited, if any, coordination across case studies
(see Moran and Ostrom 2005 for an exception). In large part, the focus on case studies reflected the
infancy of theory in land use science. Teams combined their own theoretical knowledge of social,
spatial and ecological changewith an inductive approach to understanding land use change – starting
from a kitchen sink of variables and an in-depth knowledge of the site to generate theory on the
interrelationships between variables and the importance of contextual effects. This lack of coordina-
tion in methods, documentation and theory made it very difficult to conduct meta-analyses of the
driving factors of land use change across all the case studies to identify common patterns and
processes (Geist and Lambin 2002; Keys and McConnell 2005).

Recognizing that important causative factors were affecting the entire site of a case study (such
as a new road which opens an entire area) and that experimentation was not feasible, computa-
tional, statistical and spatially explicit modeling emerged as powerful tools to understand the
forces of land use change at a host of space–time scales (Veldkamp and Lambin 2001; Parker,
Manson, Janssen, Hoffmann, and Deadman 2003; Verburg, Schot, Dijst and Veldkamp 2004).
Increasingly, in recognition of the crucial role of humans in land use change, modeling approaches
that represent those actors as agents have emerged as an important, and perhaps the dominant,
modeling approach at local levels (Matthews, Gilbert, Roach, Polhil and Gotts 2007).

In this introductory paper we briefly discuss some of the major themes that emerged in the
workshops that brought together scientists from anthropology, botany, demography, developmental
studies, ecology, economics, environmental science, geography, history, hydrology, meteorology,
remote sensing, geographic information science, resource management, and sociology. A central
themewas the need tomeasure andmodel behavior and interactions among actors, aswell as between
actors and the environment. Many early agent-based models focused on representing individuals and
households (e.g. Deadman 1999), but the importance of other types of actors (e.g. governmental units
at various levels, businesses, and NGOs) was a persistent theme. ‘Complexity’ was a term that
peppered the conversation, and it was usedwithmultiple meanings. But the dominant topic to emerge
was comparison and generalization: with multiple case studies and agent-based models blooming,
how do we compare across them and move towards generalization? We return to the generalization
issue at the end of this introductory paper after a brief discussion of the other themes.

2 R.R. Rindfuss et al.
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 2. Complexity

A number of theoretical and methodological themes from complexity science and the study of
complex adaptive systems inform land-use science (c.f. Manson 2001; Brown et al. 2007).
Complexity science, with intellectual roots in general systems theory (von Bertalanffy 1968),
has experienced considerable advancement in the last couple of decades with contributions from
physics, genetic biology, evolutionary computation and political science (Axelrod and Cohen
2000). Unlike the general systems theory which focuses on order, stability, and rationality,
complexity science is more concerned with disorder, instability, and change – usually rapid change
(Warren, Franklin and Streeter 1998). The term ‘complex adaptive systems’ refers to systems that
exhibit (a) macro-level outcomes manifested as emergent spatial or temporal regularities,
(b) decision-making with specified behaviors, (c) heterogeneity in characteristics or behavior of
actors, (d) social or other interactions that affect their attributes or decisions, and (e) feedback
mechanisms that can produce nonlinear system behaviors (e.g. Waldrop 1992; Holland 1995;
Axelrod and Cohen 2000). These characteristics limit the ability of traditional statistical and
dynamical modeling approaches to adequately examine system outcomes. Rather than proposing
a set of hypotheses to be tested or making specific ontological claims, complexity science offers a
flexible ontology, based on relationships among actors, and makes claims about how we can learn
about systems using simulation modeling (Manson and O’Sullivan 2006). However, complexity
science offers precious few testable hypotheses related to any specific domain, such as land use
science.

Complexity encompasses interactions within and among ecological systems, the physical
systems on which they depend, and the human systems with which they interact (Michener et al.
2001; Liu et al. 2007). Complexity is scale sensitive (Phillips 1999;Walsh, Evans, Welsh, Entwisle
and Rindfuss 1999). Feedbacks can heighten, constrain or even reverse some of the original
changes in land use/land cover (Verburg 2006). Studies of the complex dynamics of land use draw
on theories and practices from across the social, natural, and spatial sciences (Parker, Hessl and
Davis 2008). For instance, complexity has been applied to the study of tropical deforestation
(e.g. Silveira, Coutinho and Lopes 2002; Deadman, Robinson, Moran and Brondizio 2004;
Messina and Walsh 2005; Entwisle, Rindfuss, Walsh and Page 2008) and land use/land cover
change in coupled human–natural systems (e.g. Messina and Walsh 2001; Lambin, Geist and
Lepers 2003; Evans and Kelly 2004; An, Linderman, Qi, Shortridge and Liu 2005; Walsh,
Entwisle, Rindfuss and Page 2006; Walsh, Messina, Mena, Malanson and Page 2008). In short,
complexity science has established itself as an emerging paradigm for the study of non-linear and
dynamic systems that can be applied to understanding pattern-process relations in coupled human–
natural systems, and where system dynamics are examined using a variety of methods, including
agent-based models (ABMs).

3. Modeling agent interactions

A fundamental feature of complex adaptive systems is considerable interaction among actors, and
between actors and the environment. Agent-based modeling is an ideal tool to incorporate such
interactions. Indeed, agent interaction is a key characteristic that yields emergent properties within
ABMs. Agents can differ in important ways: the characteristics of the agents may change over time
as they adapt to their environment, learn from experiences through feedbacks, or ‘die’ as they fail
to alter behavior relative to new conditions and/or factors. ABMs have recently been used, for
instance, to explore complex systems in land use/land cover change (Brown, Page, Riolo and Rand
2004; Deadman et al. 2004; Evans and Kelley 2004; An et al. 2005; Brown, Page, Riolo, Zellner
and Rand 2005), ecosystem management (Bousquet, Le Page, Bakam and Takforyan 2001;

Land use change: complexity and comparisons 3
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 Bousquet and LePage 2004), and agricultural economics (Berger 2001). Multiple empirical data

sources, including cross-sectional and longitudinal surveys, are used to characterize agents and to
define their spatial interactions with the environment and other agents (Robinson et al. 2007).
Socio-economic and demographic data, possibly linked to the environment through spatial data
layers and/or social and spatial networks, are used to address the adaptive behaviors of agents
through information sharing, learning through historical events (i.e. a drought), or choosing to act
through stochastic processes. Parameters determining the influence of environment (biophysical or
social) and history on agents’ decision-making in spatial simulation models can be developed
through empirical statistical approaches (Evans and Kelly 2004; An et al. 2005).

Interaction among agents can be conceptualized and modeled in a variety of ways. Little, if
anything, is known about the consequences of featuring one type of interaction over another in
these models. Agents may have a direct influence on each other. For example, neighboring farmers
might talk about what works and what does not work on their adjacent lands; each will be
influenced by the successes (or failures) of the other. Agents may be influenced by prevailing
norms about appropriate land uses, which are enforced through local commentary and gossip.
Agents may interact strategically to achieve their own goals within the context of the goals of
others (e.g. Ostrom 2002), and their behaviors may be shaped by their perceptions of others, as
well as myths. For example, neighboring farmers may need to coordinate the flow of water
(Lansing 1991). Agents may also compete in markets. For example, they may compete for off-
farm jobs on a seasonal basis; they may try to time the sale of their products to achieve the highest
price. These are just a few examples of agent interaction with direct implications for land use.
Interestingly, each type is studied within and relates to different disciplinary literatures: social
influence and social learning in the social network, anthropological and demography literatures;
strategies and outcomes for the use of common resources in the geography, political science and
economics literatures; and market behavior in the economics literature. A challenge to the
interdisciplinary land use science community is to consider the range of potentially relevant
interactions among agents and to develop a strategy for choosing which to emphasize. In addition,
new methods and techniques are needed to detect, monitor, measure and translate these interac-
tions from the real world into formal model specifications.

4. Actors other than individuals and households

The land-use science community, especially those who work at the case study level and incorpo-
rate the tools of ABMs, has learned more about the effects of individual and household actors’
behaviors on land cover and use change than the effects of other types of human actors, such as
governmental units, businesses, and non-governmental units (religious groups, volunteer organi-
zations, and various charities). This was the result of a deliberate choice on the part of numerous
research teams who felt that, for the areas they studied, individuals and households were the
predominant decision-makers. In addition to the theoretical rationale, social science methods for
obtaining data on individuals and households are more developed and agreed upon than methods
for obtaining data on organizations and institutions. While this was undoubtedly a wise strategy, it
seems abundantly clear that the land-use science community needs to be able to move beyond, but
not abandon, individuals and households. The reasons are straightforward and examples plentiful.
Zoning and other statutes regulate how certain land parcels can be used. Governments provide
various incentives and disincentives regarding the use of land parcels (ranging from the building of
the Erie Canal to the protection of the Wolong Nature Reserve, China). Businesses and various
NGOs own and use land, sometimes in discontinuous parcels. A challenge for the land use
modeling community is to bring institutions into ABMs that also include individuals and

4 R.R. Rindfuss et al.
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 households. There are also non-human agents operating on the landscape – fire and pathogens, for

example, can play an important role in land cover and land use change.

5. Representing uncertainty: model calibration and uncertainty

Fundamental to assessing model performance is determining the general goals of the modeling
activity – prediction or explanation/understanding of patterns or processes (Brown, Aspinall and
Bennett 2006). If prediction is the intent, then the ability of the model to replicate some measure of
reality is an appropriate evaluation metric (e.g. Pontius, Huffaker and Denman 2004). If the goal is
explanation, then the outcomes of the model need to be assessed relative to the theoretical and
empirical understanding of pattern–process relations.

Whether concerned about prediction or explanation, model parameterization, calibration, and
validation are central concerns. In developing rules to assess land cover dynamics, there is the
temptation to over-parameterize the model and hence ‘over fit’, rendering the model deterministic
(e.g. Brown et al. 2005; Pijanowski, Alexandridis and Mueller 2006). Calibration of the model is
commonly accomplished by comparing the model outcomes to a series of classified satellite
images, and fine-tuning the parameter values, rules and relationships to generate improved
model fit. The danger is that this approach trades fit for generality and applicability.

6. Comparisons

Complexity implies intrinsic differences across study sites, and, not surprisingly, the word ‘com-
plex’ was used repeatedly with reference to the difficulty of comparing the data, methods and
models used in the various cases. The lack of comparability of data across sites was striking.
Perhaps the most common data element was the use of remotely sensed data, but even here there
were differences in sensors and the methods used to classify land cover. The diversity of data used
to inform agent-based models is widespread throughout the literature (e.g. Robinson et al. 2007),
making comparison a complex task. Similar issues have arisen in the literature (Parker et al. 2003;
Parker, Brown, Polhill, Manson and Deadman 2008) and at our workshop with respect to the
elements incorporated within agent-based models. Another issue that makes comparison difficult
is the link between agents and the land. Some agent models represent decision-making at the plot
level while others dynamically link people and plots.

7. Towards generalization

Generalization (that is, the ability to move beyond a specific case and a particular model) emerged
as the issue of most concern to our diverse interdisciplinary group of case study and modeling
specialists. Assuming a model is useful at one location (i.e. one model and one location), modelers
often encounter problems when applying a site-specific model to other locations. For example, the
same processes may not be occurring at multiple sites, and if so, they may not be occurring at the
same scale or resolution.

In the reverse case of many models applied to one site, a number of problems also exist. For
example, if the models reproduce an observed result but incorporate different processes then they
have only achieved a ‘proof of concept,’ i.e. that given the incorporated processes it is possible to
derive the observed result. Then we are faced with the problem of determining which model best
represents what has actually happened on the site. One approach that has been offered to compare
models is the pattern-oriented modeling approach (Grimm et al. 2005). By matching model results
to additional patterns of observation, we increase our confidence that the processes represented in
the model are similar to those in the system being studied.

Land use change: complexity and comparisons 5
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 We might also have different case studies, with different data, sites and ABMs that produce

different results; how can we adjudicate among them? In these cases we can only attempt to
retrieve common drivers or actors identified in each case study that are important contributors to
land-use and land-cover change. Given that models are often written in different programming
languages, even if their code is made public, how do we compare them? These are questions that
we expect the land use science community will struggle with for quite some time. The four papers
in this themed issue do not provide definitive answers, but they help clarify the issues and move the
community closer to being able to answer them.

The first paper, ‘Complex systems models and the management of error and uncertainty’,
focuses on sources of error and uncertainty in ABMs, expectations about the match between model
results and reality, and methods of assessment. The authors distinguish between uncertainty in the
underlying data (i.e. measurement error) and uncertainty due to the model itself. In the case of
measurement error, there are well-defined approaches to assessing its nature and extent. Less is
known about the consequences of measurement error in complex systems, as it might result not
only in divergence between model predictions and reality, but could propagate through the model
in unanticipated ways. Uncertainty due to the model itself has several sources. For example, there
could be incompleteness in the agent decision-making algorithm. Another source is the fact that at
some fundamental level, actor behavior does not follow an algorithm exactly, i.e. the model is a
generalization of the process being represented. Even if all influences were explicitly modeled,
there would still be uncertainty associated with the exercise of free will. The challenge to
researchers is to untangle sources of error and uncertainty, and then develop expectations about
the match between model results and ‘reality’ that reflect this understanding.

The next paper, ‘Adding ecosystem function to agent-based land use models’, discusses how
biogeochemical simulations can be linked to ABMs of land use and the specific challenges of
doing so. The particular ecosystem representation addressed in this paper is the Century model, a
generalized biogeochemical model that simulates plant production, nutrient cycling, and soil
organic matter dynamics in relation to land management practices. The Century model is used
to generate information about the potential outcomes of land management decisions that agents
might consider in making their actual decisions. Given this objective, the authors examine three
ways to accomplish a link between an ABM of land use and the Century model. The approaches
vary in terms of the type of information agents receive (e.g. number of options considered) and
how they receive it (e.g. directly or through some third party), the time period involved, and their
computational demands. Models that incorporate a detailed biogeochemical simulation couple
human and natural systems in a more complete way and also make possible a broader range of
comparisons to other modeling efforts. However, as the authors document, these gains come at a
computational cost.

The third paper, ‘Case studies, cross-site comparisons, and the challenges of generalization:
comparing agent-based models of land-use change in frontier regions’, makes an interesting contrast
to the first two papers. In this paper, the tension between parsimony and completeness in the
specification of agent behavior arises from the desire of researchers to capture what is most essential
about their specific case study. Models are developed in response to a particular set of research
questions as they apply in a particular research site, subject to the constraints of data availability (and
also the disciplinary expertise of the researchers developing themodel). As a consequence, input data
and algorithms are both different. While this adds realism in a particular application, such specificity
has risks. As Messina and his colleagues point out (in the first paper), it has the potential to relegate
specific models to the status of a scientific curiosity. Parker and her colleagues (in the third paper)
propose a way forward, based on a disciplined assessment of four ABMs of land use in frontier areas
that were developed and implemented independently of one another. They compare these models in
terms of how they address agent–parcel relationships, non-spatial social networks, land suitability,

6 R.R. Rindfuss et al.
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 multiple agents, land transfer mechanisms, and institutional drivers. The paper takes important steps

to identify what processes need to be included in all land change models and to lay the groundwork
for a generalized model.

The final paper, ‘An agent-based model of household dynamics and land use change’, is an
illustrative example of how it might be possible to compare models in a more precise, but not
necessarily easy, manner. This paper takes a model that is currently under development and
describes the variables, relationships among variables and assumptions in a series of mathematical
equations. By using mathematics, a common language across numerous disciplines, components
and relationships are more precisely defined. The paper also illustrates how ABMs of land use can
be linked with formal population projections and social network dynamics. The incorporation of
population projections is not new to land use science, although rarely are they fully developed. For
example, feedbacks are often underspecified. The incorporation of fully dynamic social networks is
more novel. As Parker and her colleagues document in the third paper, the modeling of social
interaction is still fairly primitive in ABMs of land use. Elaborating this side of the coupled human–
natural system is important, but comes at a cost. Data and computational demands are significant.

8. Conclusion

The papers in this special issue, resulting from two workshops intended to chart the way forward
for studies of complex land-use dynamics, suggest that the paradigm of ‘complexity’, in its
multiple meanings, raises both new opportunities and new challenges that require multidisciplin-
ary attention. The opportunities include the potential to explore non-linear interactions between
social and environmental processes in a way that represents the richness of human behavior and
ecological functioning, and the mutual dependence of these systems. Computer simulations of
agent-based systems provide this opportunity. The challenges are both conceptual and methodo-
logical. The case studies being conducted and the models being built are sufficiently complex that
comparison and generalization are difficult. Nevertheless, comparisons are possible, and it is
important for the land use science community to work towards the goals of comparison and
generalization.
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