


Abstract
Complex forest structure and abundant tree species in the
moist tropical regions often cause difficulties in classifying
vegetation classes with remotely sensed data. This paper
explores improvement in vegetation classification accuracies
through a comparative study of different image combinations
based on the integration of Landsat Thematic Mapper (TM)
and SPOT High Resolution Geometric (HRG) instrument data,
as well as the combination of spectral signatures and tex-
tures. A maximum likelihood classifier was used to classify
the different image combinations into thematic maps. This
research indicated that data fusion based on HRG multispec-
tral and panchromatic data slightly improved vegetation
classification accuracies: a 3.1 to 4.6 percent increase in the
kappa coefficient compared with the classification results
based on original HRG or TM multispectral images. A combi-
nation of HRG spectral signatures and two textural images
improved the kappa coefficient by 6.3 percent compared with
pure HRG multispectral images. The textural images based
on entropy or second-moment texture measures with a
window size of 9 pixels � 9 pixels played an important role
in improving vegetation classification accuracy. Overall,
optical remote-sensing data are still insufficient for accurate
vegetation classifications in the Amazon basin.

Introduction
The moist tropical forests in the Amazon have special
importance in the biodiversity and climate of the world.
High deforestation rates in the Amazon have been associated
with the expansion of highways and roads and the growth
of Amazonian cattle ranching and soybean farming (Skole
et al., 1994; Laurance et al., 2004). Large areas of primary
forests have been converted into a mosaic of agricultural
lands, pastures, and different successional formations
(Lucas et al., 2000; Roberts et al., 2002). The unprecedented
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tropical deforestation rates have been regarded as an impor-
tant factor in the climate change and environmental degrada-
tion at regional and global scales (Skole et al., 1994). In
order to better understand the consequences caused by
deforestation and landscape transformations in the region,
an international research program called Large Scale
Biosphere-Atmosphere Experiment in Amazonia (LBA), has
been carried out since 1997 (http://lba.cptec.inpe.br/lba/).
Through this program, an important research topic is the
mapping and monitoring of land-use/land-cover changes.
A research team from the USA (Indiana University and Indiana
State University) and Brazil (Embrapa: Brazilian Company
of Farming Research and INPE: National Institute of Space
Research) has made great efforts to improve the accuracy of
vegetation classifications, especially successional vegetation
classification (Mausel et al., 1993; Moran et al., 1994;
Brondízio et al., 1996; Lu, 2005a).

In the moist tropical regions, complex forest stand
structure and abundant tree species often cause difficulties
in classifying vegetation classes using remotely sensed data.
Most previous research in the moist tropical regions pro-
vided only coarse vegetation classes, such as primary forest
and successional vegetation (Adams et al., 1995; Roberts
et al., 2002). However, the biomass densities of different
successional stages vary considerably, ranging from less
than 2 kg/m2 in initial successional vegetation to greater than
20 kg/m2 in advanced successional vegetation (Lu, 2005b).
The biomass densities of primary forests also vary consider-
ably, ranging from approximately 12 kg/m2 to greater than
50 kg/m2 due to different environments. Obviously, a single
class of primary forest or successional vegetation is not
suitable for many applications such as carbon estimation
or land degradation assessments. Lu (2005a) has provided
a detailed summary of the previous efforts on vegetation
classification using field measurements and satellite images.
A new approach based on the complexity of forest stand
structure was then developed for successional vegetation
classification. But in practice, the collection of a large
number of field measurements, including vegetation stand
attributes (e.g., height, diameter at breast height), is often
very challenging, especially in the Brazilian Amazon due to
the difficult access to some remote areas and the intensive
labor required in an environment characterized by such high

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING March  2008 311

Dengsheng Lu is with the School of Forestry and Wildlife
Services, Auburn University, 602 Duncan Drive, Auburn,
AL 36849 (luds@auburn.edu).

Mateus Batistella and Evaristo E. de Miranda are with the
Brazilian Agricultural Research Corporation, Embrapa
Satellite Monitoring, Campinas, São Paulo, Brazil.

Emilio Moran is with the Center for the Study of Institutions,
Population, and Environmental Change (CIPEC), Indiana
University, Bloomington, IN, and the Anthropological Center
for Training and Research on Global Environmental Change
(ACT), Indiana University, Bloomington, IN.

Photogrammetric Engineering & Remote Sensing 
Vol. 74, No. 3, March 2008, pp. 311–321.

0099-1112/08/7403–0 /$3.00/0
© 2008 American Society for Photogrammetry

and Remote Sensing 

311



312 March  2008 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Figure 1. Location of the study area: Machadinho
d’Oeste in the state of Rondônia, Brazil.

biodiversity. Thus, it is important to find a suitable approach
for improving vegetation classification performance based on
the use of remote-sensing features, such as spectral, spatial,
and temporal characteristics to address these needs. Without
accurate land-cover classification, estimates of biomass and
carbon are fraught with degrees of error that make modeling
subject to unacceptable uncertainties.

Time series of Landsat Thematic Mapper (TM) data have
been extensively used for land-cover or vegetation classifica-
tion in the moist tropical regions (Mausel et al., 1993;
Moran et al., 1994; Adams et al., 1995; Foody et al., 1996;
Brondízio et al., 1996; Roberts et al., 2002; Vieira et al.,
2003; Lu et al., 2004), but a fine vegetation classification
based on the medium spatial resolution images have proven
difficult. Although higher spatial resolution data, such as
SPOT High Resolution Visible (HRV), and recently SPOT High
Resolution Geometric (HRG) instrument data are readily
available, they are frequently used for urban-related studies
(Marceau et al., 1990; Gong et al., 1992; Shaban and Dikshit,
2002), and their roles for improving vegetation classification,
especially in the moist tropical regions have not been
examined in detail. Increased spatial resolution considerably
reduces the mixed pixel problem, and effective use of
spatial information may improve detailed vegetation classifi-
cation accuracies. Two image processing techniques for
making use of the higher spatial resolution information are
often used for improving land-cover classification perform-
ance. One approach is based on data fusion through the
integration of multispectral and high spatial resolution
information. Previous research has explored the data fusion
approaches for improvement of land-cover or vegetation
classification (Welch and Ehlers, 1987; Yocky, 1996; Haack
et al., 2002). The second approach is to use the spatial
information inherent in high spatial resolution imagery.
In particular, textures have proven useful in improving land-
cover classification accuracy (Marceau et al., 1990; Shaban
and Dikshit, 2001; Chen et al., 2004). Many texture meas-
ures have been developed since the 1970s (Haralick et al.,
1973; Kashyap et al., 1982). Of the many texture measures,
the grey-level co-occurrence matrix (GLCM) texture measure
is frequently used.

In the moist tropical regions, the classification of
detailed vegetation classes with remotely sensed data is
still very difficult and the use of higher spatial resolution
images in improving vegetation classification accuracy is
poorly understood. Hence, this paper aims to explore the
possibility of mapping fine vegetation classes through a
comparative analysis of different image combinations, such
as the incorporation of the spectral features in the Landsat
TM image and the spatial features in the SPOT HRG image, as
well as the combinations of textures and spectral signatures.
A maximum likelihood classifier was used to classify
different image combinations into thematic maps, followed
by an accuracy assessment using reference data to evaluate
the classification performance and to identify suitable image
processing procedures for vegetation classification in the
study area.

Study Area
The study area is located at Machadinho d’Oeste in
northeastern Rondônia (Figure 1). A well-defined dry
season lasts from June to August. The annual average
precipitation is 2,016 mm and annual average temperature
is 25.5° C (Rondônia, 1998). The terrain is undulating,
ranging from 100 to 450 m above sea level. Several soil
types, mainly alfisols, oxisols, ultisols, and alluvial soils,
have been identified (Bognola and Soares, 1999). Although
Machadinho d’Oeste has a specific institutional and

architectural design (Batistella et al., 2003), the study area
is representative of rural settlements in the Amazon and
mimics the dynamics of deforestation and land-use cycles
found in other parts of the region, specifically in the state
of Rondônia.

The settlement of Machadinho d’Oeste covers about
2,000 km2 and is adjacent to the borders with the states of
Amazonas and Mato Grosso. The major deforestation began
in late-1980s. Due to land-use intensification, most succes-
sional vegetations are in the initial and intermediate stages,
and limited areas are in the advanced stage. The majority
of successional vegetation has biomass density of less than
15 kg/m2, but most of the primary forest has biomass density
greater than 20 kg/m2 (Lu, 2005a). In deforested areas,
pastures, perennial crops (e.g., coffee, cocoa), agroforestry
(e.g., cocoa associated with the rubber tree), and small fields
of annual crops are the most common land-uses. Because of
the high temperature and precipitation, the soil nutrients are
lost rapidly and soil erosion can be severe, thus the land
degrades rapidly if not properly used, resulting in the land
being left to fallow, setting the stage for the return of
successional vegetation. Settlers, rubber tappers, and loggers
inhabit the area, transforming the landscape through their
economic activities and use of resources (Batistella, 2001).
Farming systems are mainly household-based, and little
depends on larger group efforts. Rubber tappers have rights
over communal forest reserves where they practice extrac-
tion. Loggers play a major role in providing access to remote
areas within the settlement as they open trails through the
forest to reach valuable species.



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING March  2008 313

TABLE 1. CHARACTERISTICS OF VEGETATION TYPES

Vegetation Types Parameters Main Characteristics

Cultivated pasture (CUP) Grass � 75% Pastures managed to keep the dominance of grass species
Degraded pasture (DGP) Grass ranges from Limited seedlings and saplings appeared in the ground

25% to 75%
Agroforestry/Perennial Coffee, rubber, banana, cacao plantations or their association

agriculture (AGF) with other economic or non-economic species
Initial succession (SS1) ASD: 2 to 5 Herbaceous plants, seedlings, and saplings together are

ASH: 2 to 6 responsible for over 90 percent of total biomass, with a
AGB: 0.5 to 5 vertical structure characterized by a full profile of
Age: 1 to 5 saplings and herbaceous plants. Saplings are the main

structure element and represent the majority of the
aboveground biomass.

Intermediate succession (SS2) ASD: 5 to 15 Saplings still account for most of the biomass in SS2.
ASH: 6 to 12 Vegetation structure provides a mix of dense ground
AGB: 4 to 10 cover of saplings and young trees with higher canopy
Age: 4 to 15 than SS1 and small internal differences between canopy

and understory individuals. Stratification between canopy
and understory begins in SS2.

Advanced succession (SS3) ASD: 10 to 25 Stratification is obvious in SS3 with trees dominating
ASH: 9 to 17 the canopy. In this stage, there is a major shift in
AGB: 8 to 25 structure that differentiates understory from canopy
Age: 10 to 50 individuals; that is, the presence of saplings is less 

significant than that of trees. One can find differences 
between the canopy and understory in terms of height 
and density of species.

Upland dense forest (UDF) ASD: 17 to 30 In a typical primary forest, trees account for the majority of
ASH: 12 to 25 the aboveground biomass, reaching over 90 percent.
AGB: 20 to 50 Large trees occupy the canopy. Trees with DBH of

25 to 30 cm dominate, and a considerable number of
individuals have a DBH over 40 cm. Many tree individuals
are taller than 17 m and some between 25 and 30 m are
present, followed by a few scattered emergent individuals
over 35 m high.

Upland open forest (UOF) ASD: 12 to 20 Usually located in the areas with steep slopes and poor
ASH: 10 to 15 soil conditions
AGB: 10 to 20

Flooding forest (FLF) Similar with UDF Usually located along water courses with seasonal 
flooding conditions

Note: ASD and ASH represent average stand diameter (cm) and average stand height (m), AGB means aboveground biomass
(kg/m2), and DBH means diameter at breast height.

Methods
Before implementing field data collection and image clas-
sification, a suitable vegetation classification system was
required. The selection of a vegetation classification scheme
was motivated by two factors: our previous experience in
vegetation classification since the mid-1990s (e.g., Mausel
et al., 1993; Brondízio et al., 1996; Lu et al., 2004) and the
requirement of detailed vegetation information for our
Amazonian research (Batistella and Moran, 2005). Table 1
summarizes the major characteristics of the vegetation
classification system used in this study. Pastures were
separated from other vegetation classes based on the per-
centage of grass cover and the limited presence of seedlings
and saplings. Successional vegetations were assigned solely
to the vegetation areas where grass cover was less than
25 percent, which generally occurred in sites that had been
abandoned for more than two years. The separation of
different successional stages was based on stand structural
parameters: biomass and averages of forest stand diameter
and height. The primary forest was separated into upland
dense forest, upland open forest, and flooding forest based
on biomass density, moist conditions, and topographic
factors. The coffee and cocoa plantations and the associa-
tion of these species with other economic or successional
species were grouped as an agroforestry/perennial agricul-
ture class.

Field Data Collection
Our first fieldwork in this study area was conducted during
the dry season of 1999. Preliminary image classification,
based on a 1998 TM image and band composite printouts,
indicated candidate areas to be surveyed, and a flight over
the areas provided visual insights about the size, condition,
and accessibility of each site (Batistella, 2001). The surveys
were carried out in areas with relatively homogeneous
ecological conditions (e.g., topography, distance from water,
and land-use) and uniform physiognomic characteristics.
After defining the area to be surveyed (plot sample), three
nested subplots (1 m2, 9 m2, and 100 m2) were randomly
selected to accurately represent the variability within the
plot sample (Figure 2). A detailed description of field data
collection methods is found in Batistella’s dissertation
(2001). During fieldwork, stand parameters, such as total tree
height and diameter at breast height, in 26 sample plots
covering different stages of successional vegetation and
14 sample plots covering primary forests were measured in
this study area. These measurements were analyzed for
separation of different successional stages and primary forest
classes with the Canonical discriminant analysis (Lu et al.,
2003a).

The majority of fieldwork was conducted in August 2002
and August 2003. During fieldwork in August 2002, an
Ikonos color composite (acquired on 28 May 2001) was used
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Figure 2. Strategy of field data collection for succes-
sional vegetation and primary forests.

to assist field data collection for different successional
stages, agroforestry/perennial agriculture, and degraded
and cultivated pastures. In August 2003, a SPOT HRG color
composite was used to assist collection of more ground data.
Every sample plot was registered with a global positioning
system (GPS) device to allow further integration with spatial
data in both geographic information systems (GIS) and image
processing systems. Some primary forest sample plots were
identified with visual interpretation of Ikonos or HRG color
composite based on our field experiences. The collected
sample plots were then separated into two groups: one
group to be used for training samples in the maximum
likelihood classification, and another group to be used for
assessing classification results.

Image Data Collection and Preprocessing
Two sensor data, Landsat-5 TM and SPOT5 HRG, were used in
this research. The TM image with 30-meter spatial resolution
has six bands, covering three visible bands (blue, green,
and red), one near-infrared (NIR) band, and two shortwave-
infrared (SWIR) bands. The HRG image has five bands, covering
one panchromatic band with 5-meter spatial resolution, two
visible (green and red) bands, one NIR band with 10-meter
spatial resolution, and one SWIR band with 20-meter spatial
resolution. The TM image was acquired on 08 July 2003 with
sun elevation angle of 42.966° and sun azimuth angle of
45.719°. The HRG image was acquired on 26 June 2003 with
sun elevation angle of 51.065° and sun azimuth angle of
31.848°. Both sensor data were acquired during the dry
season with similar climate conditions. Ikonos data (4-meter
spatial resolution), acquired on 28 May 2001, were employed
during the fieldwork to assist the collection of sample plots
for different vegetation classes.

Accurate image registration and atmospheric correction
are two important aspects in an image preprocessing proce-
dure. Image-to-image registration between TM and HRG images
was conducted, using the HRG image as a reference image, so

that both TM and HRG images have the Universal Transverse
Mercator coordinate system. A nearest-neighbor algorithm
was used to resample the TM images to 30-meter spatial
resolution. A registration error of 0.1816 pixels (x error:
0.1409, y error: 0.1145) for the TM image was obtained during
image registration.

Many approaches, ranging from simple relative calibra-
tion and dark-object subtraction to complex model-based
calibration approaches (e.g., the 6S radiative transfer code for
atmospheric correction), have been developed for radiometric
and atmospheric normalization or correction (Chavez, 1996;
Vermote et al., 1997; Tokola et al., 1999; Song et al., 2001;
Canty et al., 2004). Because the dark-object subtraction
approach was strictly an image-based procedure, and cor-
rected for the effects caused by sun zenith angle, solar
radiance, and atmospheric scattering (Chavez, 1996; Lu et al.,
2002), this approach was used in this study for atmospheric
correction of TM and HRG images, based on the following
equations:

(1)

for SPOT HRG data, and (2)

TM data. (3)

In these equations, L� is the apparent at-satellite radiance for
spectral band �, DN� is the digital number for band �, A� is
the calibration factor for spectral band � of the HRG image,
and R� is the calibrated reflectance. L�.haze is path radiance,
Esun� is exo-atmospheric solar irradiance, D is the distance
between Earth and the Sun, and � is the Sun zenith angle.
The path radiance for each band was identified based on the
analysis of water bodies and shades in the images.

Wavelet-merging Technique
Images from different sensors contain distinctive features.
Integration of multi-sensor or multi-resolution data takes
advantage of the strengths of distinct image data for improve-
ment of visual interpretation and quantitative analysis.
Solberg et al. (1996) broadly divided data fusion methods into
four categories: statistical, fuzzy logic, evidential reasoning,
and neural network. Pohl and Van Genderen (1998) provided
a literature review on the methods of multi-sensor data
fusion. Of the many approaches, the intensity-hue-saturation
(IHS) transform may be the most frequently used method for
improving visual display of multi-sensor data (Welch and
Ehlers, 1987). However, the IHS approach can only employ
three image bands and the resultant image may not be
suitable for further quantitative analysis, such as classifica-
tion. Principal component analysis (PCA) is often used for data
fusion because it can produce an output that can better
preserve the spectral integrity of the input dataset. In recent
years, the wavelet-merging technique has shown to be another
effective approach to generate a better improvement of
spectral and spatial information contents (Li et al., 2002;
Ulfarsson et al., 2003). Hence, the wavelet-merging technique
was used in this research to integrate TM or HRG multispectral
bands and the HRG panchromatic band.

The wavelet theory is similar to Fourier transform
analysis, but the wavelet transform uses short, discrete
wavelets, instead of long continuous waves as in Fourier
transforms. One key step in wavelet transform is to select
the mother wavelet. The input image is broken down into
successively smaller multiples of the mother wavelet. The
derived wavelets have many mathematically useful character-
istics that make them preferable to simple sine or cosine
functions. Once the mother wavelet is defined, a family of
multiples is created with incrementally increasing frequency.
Then, the image is decomposed by applying coefficients to

Ll � gain * DNl � bias, for Landsat 

where Ll � DNl/Al,

Rl � PI * D*(Ll � Ll.haze)/(Esunl * COS(u)),
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Figure 3. Wavelet-merging approach based on multiple
spatial resolution images (PCA and PC1 represent
principal component analysis and the first principal
component, DWT and IDWT represent discrete wavelet
transform and inverse discrete wavelet transform, HP
and LP represent high pass and low pass, and c and r
represent column and row decimation)

each of the waveforms. In theory, an image can be decom-
posed into high-frequency and low-frequency components.
The low-frequency image is the lower spatial resolution
image and the high-frequency image is the higher spatial
resolution image containing the details of the image. In
general, the high spatial resolution image is a single band,
such as an HRG panchromatic band in this study. Figure 3
illustrated the concept of data fusion with the discrete
wavelet transform based on multi-resolution images. In order
to integrate the high spatial information into the multispectral
image, it is necessary to select one image from the multispec-
tral image to replace the low-frequency image from the
wavelet transform. Different transforms, such as IHS or PCA
can be used to create a new image from the multispectral
image. In this research, PCA was used to convert the multi-
spectral bands into a new dataset and the first principal
component (PC1) was used to replace the low-frequency
image, because PC1 contained most of the information.
A detailed description of the wavelet-merging technique is
found in Lemeshewsky (1999) and the ERDAS Field Guide
(ERDAS, 2003). During wavelet-merging processing based on
TM data, TM bands 1 and 7 were not used because of the high
correlations between TM-1 and two other visible bands and
between TM SWIR bands 5 and 7. Also, the wavelengths of HRG
multispectral bands correspond to TM bands 2 to 5.

Texture Analysis
Previous research has indicated that the grey-level 
co-occurrence matrix (GLCM) texture measures are important
in improving land-cover classification accuracies (Gong et al.,
1992; Shaban and Dikshit, 2001). However, for a specific
study area, it is often difficult to identify a suitable textural
image because it varies with the characteristics of the land-
scape under investigation, the texture measure selected,
the size of the moving window, and the image band (Franklin
et al., 1996; Chen et al., 2004). The difficulty in identifying
suitable textural images and the computation cost for calcu-
lating textures limit extensive use of textures in image
classification, especially over a large area. In this research,
eight texture measures (i.e., mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correla-
tion) with nine sizes of moving windows (3 � 3, 5 � 5, 7 � 7,
9 � 9, 11 � 11, 15 � 15, 19 � 19, 25 � 25, and 31 � 31)
on the HRG panchromatic band were examined. Because not

all textural images are useful in improving vegetation
classification performance, it is necessary to identify the best
textural images that can maximize the separation of vegeta-
tion classes. Therefore, the textural images were rescaled to
an 8-bit integer format (0 to 255). The texture feature for each
training sample plot was extracted, and separability was
analyzed using a transformed divergence (TD) algorithm
(Mausel et al., 1993; Landgrebe, 2003). The textural images
with TD values greater than 1,900 were initially selected for
further analysis. Pearson’s correlation analysis was used to
analyze the correlation coefficients for the initially selected
textural images. The textural images with high separability
and low correlation coefficients were finally selected. If two
or more textural images were used, the following equation
was used to identify the best textural image combination:

Best Texture Combination (BTC) (4)

where TDi is the transformed divergence value based on the
training sample plots on the textural image i, Rij is the
correlation coefficient between two textural images i and j,
and n is the number of textural images.

Analysis of Image Classification Results
The potential images used for image classification included
TM or HRG multispectral images, the data-fused images based
on TM (or HRG) multispectral and HRG panchromatic images,
the combinations of HRG multispectral and textural images
(from one to four), and the combinations of HRG multispec-
tral and panchromatic data-fused images and textural images
(from one to four). The image classifications based on the
extensive combinations attempted to answer the following
questions:

1. Comparing HRG and TM multispectral images, can the HRG
image, with its higher spatial resolution, improve vegetation
classification performance?

2. Comparing data-fused images between TM multispectral and
HRG panchromatic images and between HRG multispectral and
panchromatic images, which one can provide better vegeta-
tion classification accuracy? Can the data-fused images
improve the vegetation classification accuracy comparing
their original multispectral images?

3. Can incorporation of textural images as extra bands into
multispectral images improve vegetation classification
performance? Can incorporation of textural images into HRG
multispectral-panchromatic data-fused images further
improve vegetation classification accuracy? How many
textural images are suitable?

Before implementing image classification, all images,
including multispectral and textural, were rescaled to 8-bit
integer format (0 to 255). Then non-vegetation types (e.g.,
water, urban and residential area, and bare soils) were
masked, based on the analysis of an unsupervised classifica-
tion (ISODATA) image on the HRG multispectral image. In the
vegetated areas, a classification system with nine vegetation
types was adopted (see Table 1 for the characteristics of
each vegetation type). About 12 to 20 sample plots were
selected for each class, with a polygon size of 9 to 40 pixels
being used for each plot depending on the homogeneity of
the vegetation type. A maximum likelihood classier was
then used to classify each combined image. The same
training sample plots were used to implement image
classification for each image combination.

In order to evaluate the classification accuracy for each
image combination, a common method for accuracy assess-
ment is through the use of an error matrix. Previous litera-
ture has provided the meanings and calculation methods
for overall accuracy, producer’s accuracy, user’s accuracy,

� �
n

i�1
TDi /�

n

j�1
Rij,
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TABLE 2. SEPARABILITY ANALYSIS RESULTS BASED ON TRANSFORMED

DIVERGENCE ALGORITHM

Window
Separability Based on a Single Textural Image

Size ME VA HO CO DI EN SM CC

3 � 3 1504 852 1397 1387 1680 1322 1295 663
5 � 5 1777 1316 1560 1356 1752 1779 1716 848
7 � 7 1862 1527 1641 1600 1847 1946 1916 1266
9 � 9 1879 1635 1637 1685 1834 1974 1987 1384
11 � 11 1865 1563 1606 1720 1843 1969 1989 1397
15 � 15 1840 1516 1673 1806 1924 1957 1968 1408
19 � 19 1818 1551 1659 1966 1865 1865 1944 1253
25 � 25 1760 1315 1625 1984 1255 1613 1098 1253
31 � 31 1570 1414 1768 1931 850 1492 892 1211

Note: ME, VA, HO, CO, DI, EN, SM, and CC represent the texture
measures of mean, variance, homogeneity, contrast, dissimilarity,
entropy, second moment, and correlation respectively. The maxi-
mum value of transformed divergence (TD) is 2000, the higher of
the TD values, the better separability between the vegetation classes.
Usually, a TD value of greater than 1,900 is regarded as good
separability between the selected classes. So the TD values with
greater than 1,900 are highlighted in bold. These textural images are
selected for further analysis, such as correlation coefficients, and
calculation of Best Texture Combination, in order to find suitable
textural images for vegetation classification.

and kappa coefficient (Congalton, 1991; Smits et al., 1999;
Foody, 2002). In this study, a total of 306 test samples were
used for accuracy assessment. Most of these test plots were
collected during fieldwork in 2002 and 2003. The HRG and
Ikonos color composites were also used to collect more test
samples based on visual interpretation. The second author
has studied this area for more than a decade and collected
extensive datasets through LBA and Embrapa projects, which
is important for the validation of the classification proce-
dures. The producer’s accuracy and user’s accuracy for each
class, and overall accuracy and kappa coefficient for each
image combination were calculated based on the error
matrix.

Results
Analysis of Textural Images
Different texture measures have various capabilities in separat-
ing vegetation classes. Different sizes of the moving window on
the same texture measure also affect this capability. Therefore,
there exists a best combination of texture measure and size
of moving window suitable for the separation of vegetation
classes. Table 2 summarized the separability analysis results of
72 test cases. It indicates that the size of the moving window is
important in the separability of vegetation classes. The best
window size varies, depending on the use of texture measures.
For example, the best sizes for entropy and second-moment
texture measures were 9 � 9 and 11 � 11, respectively, but for
dissimilarity and contrast texture measures, the best window
sizes were 15 � 15 and 25 � 25, respectively. In general,
window sizes that were too small, such as 3 � 3 and 5 � 5,
or too large, such as 31 � 31, produced poor separability of
vegetation classes. Some texture measures, such as entropy and
second-moment texture measures, provided better separability
of vegetation classes than others, such as variance and correla-
tion texture measures.

Visual analysis of the textural images indicated that some
textural images provided very similar textural information,
implying that not all textural images were needed in vegeta-
tion classification. Our analysis of the correlation coefficients

between the textural images indicated that the textural images
from the same texture measure but different window sizes
were strongly correlated; for example, the coefficient between
two textural images from entropy with 9 � 9 and 11 � 11
windows was as high as 0.97. On the other hand, some
different texture measures with similar window sizes were
also strongly correlated, such as between entropy, dissimilar-
ity, and second moment because they highlighted the similar
(or homogeneous) information. The analysis of Best Texture
Combination (BTC) helps identify the textural images with the
best capability in vegetation separation but less correlation
each other. The identified four textural images were from the
entropy texture measure with a window size of 9 � 9, the
second moment with 11 � 11, dissimilarity with 15 � 15,
and contrast with 25 � 25 (Figure 4). The selected four
textural images have a common feature: highlighting the
linear features such as roads and boundaries between land-
covers. The selected textural images were then incorporated
into spectral features as extra bands to explore their roles in
improving vegetation classification performance.

Analysis of Image Classification Results
Higher spatial resolution images have an important role in
improving successional vegetation classification accuracy,
while relatively lower spatial resolution images are helpful
for the primary forest classification (Table 3). For example,
HRG images (e.g., HRG-MS and HRG-Fusion) provided higher
classification accuracies in SS1, SS2, and SS3 than TM images,
but TM images (e.g., TM-2-3-4-5 and TM-ALL) provided higher
classification accuracies for the upland dense forest and
flooding forests. Higher spatial resolution in HRG multispec-
tral images reduced the mixed pixel problem, resulting in
improved successional vegetation classification accuracy, but
higher spatial resolution also increased spectral variations,
especially in primary forests, because of their complex forest
stand structure and canopy shadows, resulting in poor
classification accuracies. In this situation, relatively lower
spatial resolution images such as TM with 30-meter spatial
resolution reduced the spectral variation within the primary
forests, thus produced better classification accuracy, but this
spatial resolution image included mainly mixed pixels for
the successional vegetation.

Interesting to note in Table 3 is that the HRG multispec-
tral and panchromatic data-fused images slightly improved
overall classification accuracy, but the TM multispectral and
HRG panchromatic data-fused images significantly reduced the
overall classification accuracy (61.8 percent for HRG-Fusion
versus 52.9 percent for TM-Fusion). The TM-Fusion approach
especially decreased the classification accuracies of SS2, SS3,
DGP, AGF, and UOF. Although the TM multispectral and HRG
panchromatic data-fused image improved visual interpretation
effects, the large difference in spatial resolutions between TM
and HRG panchromatic images (30 m versus 5 m) exaggerated
spectral variations within the same land-cover classes and
introduced noise in the fused images, thus reducing image
classification performance. This implies that direct use of the
data-fused images without further image processing to remove
the noise is not suitable for vegetation classification.

Overall, the HRG-Fusion provided the best classification
accuracies of 61.8 percent for nine vegetation classes, a
3.1 percent increase in kappa coefficient compared with
HRG-MS, and 4.6 percent increase compared with the TM-ALL
approach. Comparing TM-2-3-4-5 and TM-ALL images, although
both have similar overall classification accuracy (approxi-
mately 58 percent), the TM-2-3-4-5 data provided slightly better
classification accuracies for most of the vegetation classes
than TM-ALL data, implying that the addition of more spectral
bands with high correlation coefficients to each other may
decrease classification accuracy.
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Figure 4. Comparison of selected four textural images with corresponding window sizes based on the
SPOT HRG panchromatic image (part of the study area): (a) entropy texture measure with 9 � 9 window
size, (b) dissimilarity texture measure with 15 � 15 window size, (c) second moment texture measure
with 11 � 11 window size, and (d) contrast texture measure with 25 � 25 window size.

Incorporation of textural and multispectral images
improved vegetation classification performance (Table 4).
For example, the combination of entropy texture image and
HRG multispectral image (MS-Txt1) improved the vegetation
classification accuracies for all except SS1. Overall classifica-
tion accuracy and kappa coefficient were increased by
5.2 percent and 5.8 percent, respectively, compared with
the results from the original HRG multispectral image. The
incorporation of textural images and HRG-Fusion images, as
well as two textural and HRG multispectral images (MS-Txt2)

can further improve the classification accuracy. However,
use of more textural images (e.g., MS-Txt3, MS-Txt4, or
Fusion-Txt3 and Fusion-Txt4) cannot further improve
classification accuracy because of the correlation between
the images. Table 4 also indicates that use of textural images
was especially helpful in improving primary forest classifi-
cation. This implies that textural images can reduce the
spectral variations of primary forests caused by complex
forest stand structure and canopy shadows in the high
spatial resolution image.
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TABLE 3. COMPARISON OF CLASSIFICATION RESULTS AMONG DIFFERENT PROCESSING PROCEDURES BASED ON DATA FUSION

HRG-MS HRG-Fusion TM-Fusion TM-2-3-4-5 TM-ALL

Class PA UA PA UA PA UA PA UA PA UA

UDF 62.5 92.6 75.0 96.8 85.0 91.9 85.0 100.0 82.5 91.7
UOF 58.3 58.3 66.7 72.7 25.0 13.6 41.7 38.5 83.3 31.3
FLF 75.0 42.9 87.5 50.0 87.5 41.2 87.5 58.3 87.5 58.3
SS3 66.7 30.0 55.6 20.8 11.1 7.1 66.7 23.1 33.3 20.0
SS2 47.2 38.6 41.7 35.7 25.0 25.0 36.1 35.1 11.1 23.5
SS1 62.0 63.3 62.0 66.0 66.0 56.9 58.0 60.4 68.0 51.5
DGP 63.2 49.0 68.4 55.3 42.1 48.5 63.2 61.5 57.9 51.2
CUP 66.0 86.8 66.0 91.7 66.0 86.8 68.0 91.9 66.0 89.2
AGF 50.8 76.2 54.0 81.0 41.3 70.3 58.7 75.5 49.2 75.6
OCA 59.2 61.8 52.9 58.2 57.8
KAP 53.2 56.3 46.3 52.1 51.7

Notes: 1. The nine vegetation classes: UDF, UOF, FLF, SS3, SS2, SS1, DGP, CUP, and AGF, represent upland dense forest, upland open
forest, flooding forest, advanced successional vegetation, intermediate successional vegetation, initial successional
vegetation, degraded pasture, cultivated pasture, and agroforestry/perennial agriculture, respectively.
2. HRG-MS, HRG-Fusion, TM-Fusion, TM-2-3-4-5, and TM-ALL represent the data sets: HRG multispectral image, data fused image
based on HRG multispectral and panchromatic data, data fused image based on TM multispectral and HRG panchromatic data,
TM four bands 2,3,4, and 5, and TM six reflective bands.
3. OCA and KAP represent overall classification accuracy and kappa coefficient.
4. PA and UA represent producer’s accuracy and user’s accuracy.

TABLE 4. COMPARISON OF CLASSIFICATION RESULTS AMONG DIFFERENT COMBINATIONS OF SPECTRAL AND TEXTURAL IMAGES

HRG-MS MS-Txt1 MS-Txt2 MS-Txt3 MS-Txt4

Class PA UA PA UA PA UA PA UA PA UA

Based on UDF 62.5 92.6 70.0 96.6 67.5 93.1 60.0 92.3 60.0 92.3
original UOF 58.3 58.3 91.7 73.3 100.0 75.0 100.0 70.6 100.0 66.7
HRG image FLF 75.0 42.9 87.5 50.0 75.0 46.2 75.0 37.5 62.5 33.3

SS3 66.7 30.0 77.8 43.8 66.7 35.3 77.8 28.0 77.8 20.0
SS2 47.2 38.6 50.0 45.0 61.1 43.1 52.8 43.2 44.4 51.6
SS1 62.0 63.3 54.0 62.8 54.0 62.8 52.0 59.1 50.0 56.8
DGP 63.2 49.0 68.4 51.0 71.1 50.9 73.7 53.9 73.7 52.8
CUP 66.0 86.8 80.0 95.2 84.0 95.5 84.0 95.5 84.0 97.7
ACF 50.8 76.2 52.4 68.8 46.0 85.3 44.4 87.5 44.4 82.4
OCA 59.2 64.4 64.7 62.8 61.1
KAP 53.2 59.0 59.5 57.5 55.8

HRG-Fusion Fusion-Txt1 Fusion-Txt2 Fusion-Txt3 Fusion-Txt4

Class PA UA PA UA PA UA PA UA PA UA

Based on UDF 75.0 96.8 77.5 96.9 80.0 97.0 82.5 97.1 80.0 97.0
HRG data UOF 66.7 72.7 83.3 83.3 83.3 90.9 83.3 90.9 91.7 84.6
fused image FLF 87.5 50.0 87.5 53.9 87.5 58.3 87.5 58.3 75.0 50.0

SS3 55.6 20.8 55.6 26.3 55.6 29.4 66.7 27.3 77.8 23.3
SS2 41.7 35.7 50.0 42.9 66.7 41.4 61.1 40.7 41.7 46.9
SS1 62.0 66.0 64.0 66.7 60.0 71.4 54.0 65.9 66.0 62.3
DGP 68.4 55.3 65.8 55.6 73.7 54.9 76.3 53.7 73.7 56.0
CUP 66.0 91.7 80.0 95.2 82.0 95.4 84.0 95.5 84.0 97.7
AGF 54.0 81.0 50.8 72.7 39.7 80.7 38.1 85.7 41.3 83.9
OCA 61.8 65.4 66.0 65.4 65.4
KAP 56.3 60.2 61.1 60.4 60.4

Notes: 1. Txt1: One textual image developed from the entropy texture measure with a window size of 9 � 9 pixels on the SPOT panchromatic
image
2. Txt2: Txt1 plus another textural image developed from the dissimilarity texture measure with a window size of 15 � 15 pixels
3. Txt3: Txt2 plus another textural image developed from the second-moment texture measure with a window size of 19 � 19 pixels
4. Txt4: Txt3 plus another textural image developed from the contrast texture measure with a window size of 25 � 25 pixels
5. OCA means overall classification accuracy; KAP means kappa coefficient; PA and UA represent producer’s and user’s accuracy; MS

represents multispectral images; Fusion means data fused image based on HRG multispectral and panchromatic data.
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Discussion
The complex biophysical environments in the moist tropical
region may be the most important factor resulting in the
difficulty of vegetation classification. Based on the vegeta-
tion vertical structure complexity (Lu, 2005a), a concept
showing the relationships among the vegetation types is
illustrated in Figure 5. Degraded pastures can be regarded as
a transition between cultivated pastures and SS1, because
some saplings and seedlings appeared in degraded pastures
indicating the degraded pastures may become SS1 after a
couple years, if they are not properly managed. Also, if no
disturbance occurs, SS1 will progress to SS2 and then to SS3.
However, there are no clear boundaries between the adjacent
stages that separate SS2 from SS1 and SS3 because of the
smooth transitions in their vegetation stand structures.
Therefore, classification of successional vegetation stages is
often difficult, even on the ground. Another difficulty is
separating AGF from successional vegetations. The agro-
forestry/perennial agriculture class can include a variety of
vegetation types, from coffee, cocoa, or rubber tree planta-
tions to arrangements of many plants, including successional
and economic species. This class is often confused with
different successional stages, especially SS2. Also, agro-
forestry/perennial agriculture and different successional
vegetation stages usually appeared in small patches in the
landscape (i.e., 0.5 to 3 ha). This implies that most of these
vegetation types appear on Landsat TM images as mixed
pixels. This often results in difficulty in collecting sufficient
and suitable training and test samples for these vegetation
classes. The trend toward land-use intensification has
reduced the extension of successional vegetation patches
and shortened the cycle of conversion of fallow areas into
agricultural production. Thus, use of subpixel information
benefit these vegetation classification accuracies (Roberts
et al., 2002; Lu et al., 2003b). In this study area, lack of
typical SS3 samples is another important factor resulting in
poor SS3 classification accuracy. The selected SS3 samples
are mainly in early stages of advanced secondary succession

and often confused with old SS2 vegetation because of their
similar vegetation stand structure. The limitation in finding
SS3 areas also created difficulties for the selection of suffi-
cient test sample plots for accuracy assessment. In this
situation, the use of expert rules based on the forest stand
structure can significantly improve the classification
accuracies (Lu, 2005a).

Classification of primary forests into multiple classes is
also a challenge because the similar forest stand structures
and the influence of canopy shadows which leads to data
saturation in optical remote-sensing data. However, the
abundant moisture can reduce the reflectance values of
flooding forests. Poor soil conditions and the topographic
effects of upland open forests on steep slopes may produce
different tree species composition and vegetation vigor
compared to upland dense forests. Conversely, non-forest
vegetations (e.g., successional vegetations, agroforestry) are
usually distributed in relatively flat areas with easy access.
Topography and moisture are not important factors in
separating successional vegetation stages in this study area.

The optical sensor data, such as Landsat TM and SPOT
HRG that mainly capture canopy and associated shadow
information, create difficulties in vegetation classification.
The shadow problem often reduces vegetation reflectance,
and the complex forest stand structure causes data saturation
making it difficult to classify forest and advanced succes-
sional vegetation classes, even though their biomass densities
may vary significantly (Lu, 2005b). Use of radar data, espe-
cially the long wavelengths such as L- and P-bands, may
improve the vegetation classification because radar can
penetrate the canopy to a certain depth to capture more
information under the canopy (Leckie, 1998; Santos et al.,
2003). The integration of optical sensor and radar data may
provide new insights for vegetation classification in the moist
tropical regions.

This research has shown the importance of high spatial
resolution images in improving vegetation classification
accuracies, especially the successional vegetation. High
spatial resolution images greatly reduce the mixed pixel
problem because non-forest vegetation often has small patch
sizes on the ground. On the other hand, high spatial resolu-
tion images have rich spatial information, but also show high
spectral variation within the same land-cover class. Effective
use of spatial information and reduction of the impacts of
spectral variation are critical for improving overall classifica-
tion performance. This study has indicated the importance
of textural images in improving vegetation classification
accuracies. One critical step in a study is to identify suitable
textural images that can provide the best separability for the
specified classes. However, selection of suitable textural
images is still a challenge, because textures vary with the
characteristics of the landscape under investigation and
images used. In particular, the selection of a suitable size of
moving window is important for a textural image, but no
window size is perfect for all vegetation types because the
field sizes of the vegetation types vary greatly, i.e., from
less than one hectare for some successional vegetation and
agroforestry to hundreds of hectares for some primary forests.
Therefore, there are tradeoffs among moving window size,
spatial resolution of images, and the sizes of vegetation
types on the ground. For this study, the selection of win-
dow size is based on the overall separability of vegetation
types, but the best window size for extraction of textural
images for the separation of non-forest vegetation types and
the separation of primary forest classes may vary because of
their different vegetation stand structures and patch sizes.
A stratification of primary forests and non-forest vegetation
types may be necessary before the selection of suitable
textural images. Two approaches may be used to evaluate the

Figure 5. A concept of vegetation stand structure
complexity among different vegetation classes (CUP
and DGP represent cultivated and degraded pastures;
SS1, SS2, and SS3 represent initial, intermediate, and
advanced successional vegetations; AGF represents
agroforestry/perennial agriculture; UOF, UDP, and FLF
represent upland open forest, upland dense forest, and
flooding forest)
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textural images: qualitative assessment based on visual
interpretation to see whether the specified information was
highlighted or not on the selected textural image; and
quantitative analysis, such as the calculation of separability
of vegetation classes based on training samples, as used in
this paper. For the selection of a single textural image, one
can select the textural image with highest separability, but
for the selection of two or more textural images, the BTC
approach developed in this paper provides an easy way to
identify the suitable combination of textural images that can
be used for improving classification performance.

Conclusions
High spatial resolution images benefit the classification of
successional vegetation stages, and relatively low spatial
resolution is useful for primary forests. The incorporation
of textural images into an HRG multispectral image is an
effective approach to improve vegetation classification
performance. The entropy or second-moment texture
measure with a window size of 9 � 9 or 11 � 11 pixels
provided the best separability for vegetation classes. Overall,
vegetation classification with optical sensor data in the
moist tropical region remains difficult, especially for the
separation of different successional vegetation stages and the
separation of agroforestry from other non-forest vegetation
types. More research is needed to incorporate optical sensor
and radar data to improve vegetation classification.
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