
ACT Publication No. 07-06 

Land-Cover Classification in the 
Brazilian Amazon with the Integration 
of Landsat ETM+ and Radarsat Data 

D. Lu, M. Batistella and E. Moran 

Reprinted from: International Journal of Remote Sensing 28(24):5447-5459. 

Anthropological Center for Training and Research on Global Environmental Change 
Indiana University, Student Building 331, 701 E. Kirkwood Ave., 47405-7100, U.S.A. 

Phone: (812) 855-6181, Fax: (812) 855-3000, Email: act@indiana.edu, internet: www.indiana.edu/-act 



International Journal of Remote Senring 
Vol. 28, No. 24, 20 December 2007, 5447-5459 

Taylor &Francis 0 T . l b 6 C r m b . D ~ ~ ~  

Land-cover classification in the Brazilian Amazon with the integration 
of Landsat ETM+ and Radarsat data 

D. LU*t§, M. BATISTELLAS and E. MORANte 
?Center for the Study of Institutions, Population, and Environmental Change (CIPEC), 

Indiana University, Bloomington, Indiana, 47408, USA 
$Brazilian Agricultural Research Corporation, Embrapa Satellite Monitoring, 

Campinas, SBo Paulo, 13088, Brazil 
$Anthropological Center for Training and Research on Global Environmental Change 

(ACT), Indiana University, Bloomington, Indiana, 47405, USA 

(Received 9 September 2005; in final form I9 November 2006) 

Land-cover classification with remotely sensed data in moist tropical regions is a 
challenge due to the complex biophysical conditions. This paper explores 
techniques to improve land-cover classification accuracy through a comparative 
analysis of different combitions of spectral signatures and textures from 
Landsat Enhanced Thematic Mapper Plus ( E m + )  and Radarsat data. A 
wavelet-merging technique was used to integrate Landsat ETM+ multkpctral 
and panchromatic data or Radarsat data. Orey-level co-occurrence matrix 
(GLCM) textures based on Landsat ETM+ panchromatic or Radarsat data and 
different sizes of moving windows were examined. A maximnm-likelihood 
classifier was used to implement image classification for dierent combinations. 
This research indicates the important role of textures in improving land-cover 
classification accuracies in Amazonian environments. The incorporation of data 
fusion and textures increases classification accuracy by approximately 5.8-6.9% 
compared to Landsat ETM+ data, but data fusion of Landsat ETM+ 
mnltispectral and panchromatic data or Radarsat data cannot effectively 
improve land-cover classification accuracies. 

1. Introduction 

Accurate image classification describing spatial distribution and patterns of land 
cover is a prerequisite for many research topics and applications, such as landscape 
characterization, land-cover change analysis, input into different models for analysis 
of carbon cycles, habitat suitability and risk of land degradation. Many efforts and 
progresses have been made to improve the landcover or vegetation classification 
performance, for example, use of subpixel information based on spectral mixture 
analyses (Adams et 01. 1995, Roberts et al. 1998, Lu et al. 2003b), use of non- 
parametric classifiers such as neural networks (Paola and Schowengerdt 1995, 
Atkinson and Tatnall 1997, Kavzoglu and Mather 2004) and decision trees (Friedl 
and Brodley 1997, Pal and Mather 2003) and use of parameters derived from forest 
structures such as vegetation age or biomass (Foody et al. 1996, Vieira et al. 2003, 
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Lu 2005). However, the landscape complexity in colonization frontiers and the 
abundant tree species of the Amazonian forests often impair the separation of land- 
cover classes when using remotely sensed data, especially the distinctions between 
(1) successional vegetation stages and (2) successional vegetation and agroforestry. 

Although several works have explored different approaches to classify succes- 
sional vegetation stages (Mausel et al. 1993, Moran et al. 1994, Brondizio et al. 1996, 
Foody el al. 1996, Steininger 1996, Rignot et al. 1997, Yanasse et al. 1997, Lucas 
et al. 2002, Lu et al. 2003a, Vieira et al. 2003, Lu 2005), the accuracy achieved is still 
poor. The main difficulties stem from the continuous transition of successional 
vegetation stages and the similar stand structures between successional stages and 
agroforestry, or between the initial successional stage and degraded pasture. To 
date, remote-sensing approaches to effectively separate these classes have not been 
developed. Because of the recognized importance of successional vegetation and 
agroforestry systems in providing environmental services such as carbon sequestra- 
tion and restoration of degraded lands, more accurate classifications will reduce 
uncertainties in models and evaluations using such information. 

Most previous research uses single-sensor data only for land-cover classification, 
but rarely has research explored the integration of different sensor data to improve 
classification accuracy in the moist tropical regions. The different characteristics of 
optical and radar datamay provide new insights for such a task. We assume that (1) 
incorporation of different spatial and spectral resolution data (e.g. Landsat 
Enhanced Thematic Mapper Plus (ETM+) multispectral and panchromatic data, 
Radarsat data), (2) combination of spectral signatures and textures and (3) 
combmation of data fusion and textures may improve the results. Hence, this paper 
aims to identify a suitable image processing procedure for improving land-cover 
classification accuracy through a comparative analysis of different image combina- 
tions based on Landsat ETM + and Radarsat data. 

2. Stody area 

The state of RondBnia has experienced high deforestation rates since the 1970s 
(INPE 2002). Following the national strategy of regional occupation and 
development, colonization projects initiated by the Brazilian government played a 
major role in this process (Batistella et al. 2003). Most colonization projects in the 
state were designed to settle landless migrants. The immigrants have transformed the 
forested landscape into a mosaic of cultivated crops, pastures, and different stages of 
secondary succession and forest remnants. The study area is located at Machadinho 
d'Oeste in northeastern Rondania. Settlement began in the mid-1980s, and since 
then land-uselcover trajectories following deforestation have put in place a dynamic 
process of forest fragmentation. A well-defined dry season lasts from June to 
August, the annual average precipitation is 2016mm, and the annual average 
temperature is 25.5"C (RondBnia 1998). Batistella (2001) describes in detail the 
characteristics of this location, a landscape in transition from a matrix dominated by 
forest to land covers with lower carbon content. 

3. Method 

3.1 Land-cover classification scheme 

A suitable classification scheme is critical for land-cover classification using 
remotely sensed data and for field data collection. Based on our previous experience 



in the region (e.g. Mausel et al. 1993, Brondizio et al. 1996, Lu et al. 2004), the 
requirement of subclasses of secondary succession for Amazonian research, and the 
importance of coffee plantations in this study area (Batistella and Moran ZOOS), we 

r. defined 12 classes to be mapped. Our previous research has indicated that three 
8 
N 

stages-initial (SSI), intermediate (SS2), and advanced (SS3) secondary succes- 
L 
m sion-are suitable for most study areas (Brondido et al. 1996, Lu el al. 2003a). 
E Successional vegetation is assigned solely to areas where the grass cover is less than 
2 25%, which generally occurs in sites that have been abandoned for more than two 
0 
P 

years. The separation of different successional stages is based on the vegetation 

3 stand structures, that is, average diameter at breast height (DBH), canopy height, 
Z and biomass (Lu et al. 2003a). The primary forest is separated into upland forest 

2 (UPF) and lowland forest (LLF) based on moist conditions and topographic 

s factors. 
5 In the initial few years after deforestation, the land is often used for annual crops 
A 
. . and cattle ranching. Pasture lands are classified as cultivated pasture (CUP) and 
m" 
rn 

degraded pasture (DGP) based on land management and land cover. That is, 
(U v cultivated pastures are defined as areas with grass cover greater than 75%, and 
m 
0 - degraded pastures are defined as areas with grass cover between 25% and 75%. 

g Agroforestry (AGF) systems in the study area are productive arrangements that 
n include economic tree species, coffee, cocoa and other understory species. Coffee 

plantations (CFP) are separated. Other land-cover classes include infrastructure 
(urban areas and roads), water and non-vegetation lowland (NVL). 

3.2 Field data collection 

Fieldwork was conducted during the dry seasons of 1999, 2000, 2002 and 2003. 
Vegetation surveys were conducted in areas with relatively homogeneous ecological 
conditions (i.e. topography, distance from water and land use). After defming the 
area to be surveyed (plot sample), three subplots including nested parcels of 1 m2, 
9m2 and 100m2 (small, medium, large, respectively) were randomly selected to 
accurately represent the variability within the plot sample. Seedlings were defined as 
young trees or shrubs with a stem diameter smaller than 2cm. Saplings were defined 
as young trees with a stem DBH greater than 2cm and smaller than IOcm. Trees 
were defined as woody plants with a DBH greater than or equal to 10 em. Total tree 
height, stem height (the height of the first main branch) and DBH were measured for 
all trees in the large parcels. Height and DBH were measured for all saplings in the 
medium parcels. Ground-cover estimation and counting of individuals were 
camed out for seedlings and herbaceous vegetation in the small parcels. In total, 
26 plots of secondary succession and 14 plots of mature forest were sampled. The 
measured parameters were used for separation of different successional vegetation 
stages and primary forest classes based on canonical discriminant analyses (Lu et al. 
2003a). 

During fieldwork in August 2002, an IKONOS colour composite (acquired 28 
May 2001) was used to support the observation of different successional vegetation 
stages, coffee plantations, and degraded and cultivated pastures. In August 2003, a 
Satellite pour I'Obsemation de la Terre (SPOT) colour composite was used to assist 
the collection of hundreds of observations over a larger area of approximately 
2000km2. After driving extensively throughout the settlement, field observations 
provided familiarity with the structure of regrowth stages. Visual estimations 
of vegetation structure attributes, such as canopy height, allowed the rapid 



determination of the three secondary succession classes defined. The distinction of 
mature forest classes was based on topographic and moist conditions. Exploratory 
analysis of remote-sensing imagery and a digital elevation model built from 
topographic maps in 1 : 100,000 scale supported the delimitation of such classes in 
the field. The separation of cultivated and degraded pasture classes was based on 
grass cover and condition. Every observation and sample plot was registered with a 
global positioning system (GPS) device to allow further integration with spatial data 
in geographic information systems (GIs) and image processing systems. The 
successional vegetation stages, coffee plantations, agroforestry systems, and 
pastures are mainly located near roads. The collection of georeferenced observations 
for these classes could be accurately located. Some primary forest sites were 
identified by visual interpretation of the IKONOS or SPOT colour composites and 
confirmed by local experts. The collected observations were separated into two 
groups: one group was used as training samples during the maximum-likelihood 
classification approach, and another group was used for assessing classification 
results. The difference between the image acquisition data (i.e. Landsat ETM + and 
Radarsat data were acquired in 2001) and field data collection dates (i.e. in 2002 and 
2003) were considered when determining vegetation classes, especially different 
successional stages, agroforestry systems, and pastures, based on land-use history 
and image interpretation. All sample plots were examined against the Landsat 
ETM + image to make sure the land-cover classes were correctly assigned. 

3.3 Data preprocessing 

3.3.1 Landsat ETM+ data. Landsat 7 ETM+ data, which were acquired on 
11 August 2001, were first geometrically registered to another Landsat TM image 
(18 June 1998), which was already rectified (Universal Transverse Mercator, south 
20 zone). A nearest-neighbour algorithm was used to resample the Landsat ETM+ 
multispectral image into a pixel size of 30m x 30m and panchromatic image into 
15m x 15m dwing image registration. A root-mean-square error of 0.36 pixels for 
the registration was obtained. An image-based dark object subtraction model was 
used to implement radiometric and atmospheric correction (Lu et al. 2002). The 
surface reflectance values after calibration ranged between 0 and 1. For the 
convenience of data analysis, the reflectance values were linearly rescaled to 8-bit 
integer format (0-255). 

3.3.2 Radarsat data. The Radarsat C-band, HH polarization data, which were 
acquired on 21 September 2001, were used in this research. This image was 
converted to a backscattering coefficient (0) using the following model (Ribbes and 
le Toan 1999, Chakraborty and Panigrahy 2000): 

where DNj is the digital number (amplitude of the backscattered signal), Aj is the 
calibration coefficient (scaling gain value) of thejth pixel, u is a constant offset, and 
I; is the incidence angle at thejth range pixel. The backscattered coefficient was then 
linearly rescaled to 8-bit integer format (CL255). 

The Radarsat data were geometrically registered to 2001 Landsat ETM+ data 
with a root-mean-square error of 0.79 pixels. The image was resampled to a pixel 
size of 15 m x 15 m using a nearest-neighbour resampling algorithm. Reducing 
speckle in the Radarsat image was needed before it could be used for land-cover 
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classification. Different filtering approaches have been examined in previous works, 
such as the enhanced Lee filter, the Lee-Sigma, and the Gamma MAP (Panigrahy 
et al. 1999, Rio and Lozano-Garcia 2000, Ndi Nyoungui er al. 2002). Here, the 

6 enhanced Lee filter was used. 
0 
N 
L 
m 
D 

3.4 Data fusion 

! Many methods have been developed to integrate spectral and spatial information. 
0" Pohl and Van Genderen (1998) reviewed methods for multisensor data fusion. The 
P 
P intensity-hue-saturation (IHS) transformation is the most frequently used method 
?? for improving the visual display of multisensor data (Welch and Ehlers 1987), but E 
2 this approach can employ only three bands, and the resultant image may be 

2 unsuitable for classification. To preserve the spectral integrity of the input dataset, 

i principal component analysis (PCA) is often used for data fusion to produce an 
d output result for further quantitative analysis. Recently, wavelet-merging techniques 
i; m have emerged as another effective approach to integrate spectral and spatial 
'Q w information contents (Li et a1 2002, Ulfarsson el al. 2003). Therefore, this paper 
-8 
0 - used the wavelet-merging approach to integrate Landsat ETM + multispectral and 
c panchromatic or Radarsat data. z o Wavelet theory is similar to the Fourier transform analysis, but the wavelet 

transform uses short, discrete wavelets, instead of a long wave as in the Fourier 
transform. One key step during the wavelet transform is to select the mother 
wavelet. The input image is broken down into successively smaller multiples of the 
mother wavelet. The derived wavelets have many mathematically useful character- 
istics that make them preferable to simple sine or cosine functions. Once the mother 
wavelet is defined, a family of multiples can be created with incrementally increasing 
frequency. Then the image can be decomposed by applying coefficients to each 
waveform. In theory, an image can be decomposed into high-frequency and low- 
frequency components. The wavelet family can be regarded as a high-pass filter. The 
low-frequency image is the lower spatial resolution image and the high-frequency 
image is the higher spatial resolution image containing the details of the image. In 
general, the high spatial resolution image is a single band, such as the Landsat 
ETM + panchromatic band, so the substitution image from the multispectral image 
must also be a single band. Thus, PCA is used to convert the multispectral bands 
into new components. The first component contains most of the information and is 
used as the substitution image. A detailed description of the wavelet-merging 
technique is found in Lemeshewsky (1999) and ERDAS Field Guide (2003). In this 
research, the higher spatial resolution data-Landsat ETM+ panchromatic and 
Radarsat data-were used to integrate the Landsat ETM + multispectral data with 
the wavelet-merging technique in order to incorporate the high spatial resolution 
information and to preserve the Landsat ETM+ multispectral features in the new, 
fused image. 

3.5 Texture analysis 

Textures have proven useful in improving land-wver classification accuracy. Many 
texture measures have been developed (Haralick er al. 1973, Kashyap et al. 1982, 
Emerson et al. 1999), and used at this swpe (Marceau et al. 1990, Augusteijn et al. 
1995, Groom el aL 1996, Shaban and Dikshit 2001, Chen et al. 2004). Many 
previous applications of textures are related to urban studies because of the 
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complexity of urban landscapes requiring higher spatial resolution data such as 
SPOT HRV. For Amazonian land-cover classification, the role of textures has not 
been extensively explored. The enhanced characteristics of Landsat ETM+ data 

6 include a panchromatic band of 15-m spatial resolution, which provides richer 
0 
N 

textural and contextual information than multispectral bands with 30-m spatial 

i resolution. Use of textures based on the Landsat ETM+ panchromatic band may 

i improve classification accuracy. Also, radar data are often used in texture form. 
Hence, in our study, texture analysis focused on Landsat ETM + panchromatic and E * Radarsat data. * 

0 The GLCM-based (grey level co-occurrence matrix) texture measures are often 
Z used. In this paper, eight GLCM-based texture measures (i.e. mean [ME], variance 
3 WA], homogeneity [HO], contrast [CO], dissimilarity PI], entropy [EN], second 
2 moment ISM] and correlation [CC]) associated with three window sizes (9x9, 

d 15 x 15, and 21 x 21) were explored. The texture images were rescaled to &bit integer 

% format (0-255). The Jeffries-Matusita (J-M) algorithm was used to analyse the 
m 
m separability of landcover classes based on training sample plots (Mausel et al. 1993, 
a 
TI 
m 

Landgrebe 2003). Pearson's correlation analysis was used to analyse the correlation 
0 - 
C 

between the selected textures. The textures with high separability but low correlation 
g coefficients were selected based on the following equation: 
n 

Best texture combination (BTC) = 
i= 1 j- 1 

where JM is the Jeffries-Matusita distance value based on the training sample 
plots, Rv is the correlation coefficient between image i and j, and n is the number of 
textural images. 

3.6 Comparative analysis of different image combinations 

Many potential image processing procedures can be used for land-cover classifica- 
tion. Hence, identification of the most suitable procedure to improve classification 
accuracy has considerable significance. In practice, it is not straightforward to 
define a suitable procedure for a specific study area. In this paper, we present a 
comparative analysis of different combinations of spectral features and textures 
based on hndsat  ETM + spectral signatures, GLCM-based textures with Landsat 
ETM+ panchromatic or Radarsat data, data fusion from Landsat ETM+ 
multispectral and panchromatic or Radarsat data. Table 1 summarizes the different 
image combinations used in this research. All images were rescaled to 8-bit integer 
format (0-255) before being used for image classification. 

Training sample plots were examined on the 2001 Landsat ETM+ image. 
Approximately 12-20 sample plots were selected for each class with a polygon sue 
of 9 to 40 pixels for each plot, depending on the homogeneity of the land-cover 
patch. The maximum-likelihood classifier (MLC) was used to classify the images 
with the same training sample plots. A majority filter with a window sue of 3 x 3 
pixels was used to remove the 'salt and pepper' effect in the classified images. 

The comparative study of different image combiiations is based on the accuracy 
assessment of the land-cover classification images. A common method for accuracy 
assessment is through the use of an error matrix. Literature on this methodology 
describes the meanings of and calculations for overall accuracy (OA), producer's 
accuracy (PA), user's accuracy (UA) and Kappa coefficient (KA) (Congalton 1991, 



Land-cover classification 5453 

Table 1. Design of image processing routines. 

Sensor data Code Description 

ETM ETM-ALL Six ETM+ reflective bands with 30-m 
spatial resolution 

A combination of six ETM+ reflective 
bands and one ETM+ panchromatic 
band 

ETM-Pantxt A combination of ETM-ALL and three 
textures from ETM+ panchromatic 
band 

ETM-Radartxt A combination of ETM-ALL and three 
textures from Radarsat GHH band 

ETM-Pan-fusion Pan-fusion Data fusion based on six reflective 
ETM + bands and one ETM t 
panchromatic band 

Pan-fusion-Pantxt A combination of Pan-fusion and 
three textures from one ETM t 
panchromatic band 

Pan-fusion-Radartxt A combination of Pan-fusion and three 
textures from Radarsat C-HH band 

Pan-fusion-PanRadartxt A combination of Pan-fusion and three 
textures from ETMt  anc chromatic 
band and t h m  textures from 
Radarsat C-HH band 

ETM-Radar-fusion Radar-fusion Data fusion based on six ETMt 
reflective bands and one Radarsat 
C-HH band 

Radar-fusion-Radartxt A combination of Radar-fusion and 
three textures from Radarsat C-HH 
band 

Radar-fusion-Pantxt A combination of Radar-fusion and 
three textures from ETM t 
panchromatic band 

Radar-fusion-PanRadartxt A combination of Radar-fusion and 
three textures from ETM+ 
panchromatic band and thee 
textures from Radarsat C-HH band 

Smits et al. 1999, Foody 2002). In this paper, test sample plots have been selected 
using the fieldwork camed out in 2002 and 2003 and visual interpretation of the 
IKONOS image. A total of 345 sample plots were used for accuracy assessment. An 
error matrix for each classification image was produced and UA, PA, OA and KA 
were calculated. 

4.1 Selection of textures for classification 

Separability analysis reveals the capability of single textures to  distinguish land- 
cover classes, and the BTC approach helps to  identify the potentially best 
combination of textures for land-cover classification. The textures with separability 
values greater than 500 for the Landsat ETM + panchromatic band and greater than 
300 for the Radarsat image were selected (table2). The correlation coeficients of the 
selected textures indicate that some textures are highly correlated. For example, the 



Table 2. Comparison of separability among the textures based on the Jeffries-Matusita 
distance algorithm. 

Window Separability based on single texture 
Sensor data size (m) ME VA HO CO DI EN SM CC 

Landsat ETM t 9 x 9  1056 350 398 372 381 459 486 406 
15x  15 1032 515 480 478 487 481 551 488 panchromaticband 21x21 984 562 509 497 524 507 578 503 
9 x 9  708 285 188 319 228 161 135 284 

Radarsat 15x15 782 359 269 347 286 277 249 335 
21x21 812 460 298 377 317 324 276 401 
-- - 

ME, mean; VA, variance; HO, homogeneity; CO, contrast; DI, dissimilarity; EN, enhopy; 
SM, second moment; CC, correlation. 

correlation coefficients are 0.96, -0.92 and -0.90, respectively, between textural 
images based on contrast (CO) and dissimilarity @I), homogeneity (HO) and DI, 
and entropy (EN) and second moment (SM) from the Landsat ETM+ 
panchromatic band. The textural images with high correlation coefficients have 
similar information contents. Therefore, the selection of textures with high 
separability values but low correlation coefficients between them is important. 
The analysis of best texture combinations (BTC) indicates that the best three 
textures are mean (ME) with a 15 x 15 window and variance (VA) and SM with a 
21 x 21 window based on panchromatic band, and ME, VA and CO with a 21 x 21 
window based on the Radarsat C-HH band. These textures were combined with 
Landsat ETM + spectral images for classification. 

4.2 Comparison of classificafion accuracies 

This research indicates the difficulty of using remotely sensed data for landcover 
(especially vegetation) classification in moist tropical regions. Table3 summarizes 
the classification accuracies of different image combinations. Overall, non- 
vegetation classes (i.e. infrastructure [INF], water PATI and non-vegetation 
lowland WVL]) have higher classification accuracies than vegetation classes (e.g. 
primary forest, secondary succession, pastures), and primary forest (e.g, upland 
forest [UPF] and lowland forest [LLF]) has higher accuracy than different secondary 
successional stages. The classification accuracies of intermediate and advanced 
successions (SS2 and SS3), agroforestry (AGF) and degraded pasture (DGP) are 
especially poor because of the similar spectral features between SS2, SS3 and AGF 
and between DGP and initial succession (SSI). The six Landsat ETM+ spectral 
bands (ETM-ALL) and the combination of six spectral bands and one panchro- 
matic band (ETM-Pan) produced similar classification accuracies, except for SS2, 
which slightly improved accuracy, and AGF, which slightly decreased accuracy in 
ETM-Pan. The combination of textures from the panchromatic band (ETM-Pantxt) 
slightly improved classification accuracy compared to ETM-ALL, but the overall 
classification accuracy from the combination of textures from Radarsat data (ETM- 
Radartxt) slightly decreased. The overall classification accuracy from the data 
fusion images (based on either Landsat ETM+ multispectral and panchromatic 
data (Pan-fusion) or Landsat ETM+ multispectral and Radarsat data [Radar- 
fusion]) slightly decreased compared to the original ETM-ALL data. However, 
the incorporation of data fusion with textures from higher spatial resolution 
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Table 3. A comparison of different wmbiiations of Landsat ETM + spectral features and 
textures. 

ETM-ALL ETM-Pan ETM-Pantxt ETM-Radamt 

5 
N 

Type PA% UA% PA% UA% PA% UA% PA% UA% 

b 
D 

UPF 73.08 95.00 73.08 90.48 80.77 91.30 73.08 86.36 

E LLF 84.62 64.71 84.62 64.71 92.31 75.00 84.62 64.71 
SS3 46.15 18.18 46.15 18.75 84.62 27.50 46.15 18.75 

0" SS2 21.43 45.00 23.81 47.62 21.43 52.94 14.29 35.29 
P * SS1 64.62 63.64 64.62 63.64 61.54 63.49 61.54 59.70 
9 DGP 48.65 66.67 45.95 65.38 48.65 58.06 48.65 54.55 
LD .- CUP 90.91 94.34 90.91 94.34 96.36 94.64 89.09 92.45 
z AGF 62.50 37.04 59.38 35.85 46.88 40.54 59.38 42.22 

2 cw 66.10 73.58 67.8 74.07 72.88 71.67 67.80 71.43 

i 
INF 90.91 100.00 90.91 100 90.91 100.00 90.91 90.91 

A WAT 100.00 84.62 100 84.62 100.00 78.57 100.00 78.57 
S, NVL 83.33 100.00 83.33 100 75.00 100.00 75.00 100.00 m 
n 

0 A 65.16 65.16 67.02 63.30 
0 
v KA 0.6089 0.6087 0.6297 0.5877 
m 
0 - 
S Pan-fusion- Pan-fbsion- 
0 Pan-fusion Pan-fusion-Pantxt Radartxt PanRadartxt 

Type PA% UA% PA% UA% PA% UA% PA% UA% 

UPF 76.92 90.91 80.77 87.50 84.62 84.62 80.77 95.45 
LLF 84.62 61.11 92.31 66.67 84.62 68.75 100.00 72.22 
SS3 69.23 22.50 84.62 32.35 46.15 23.08 69.23 40.91 
SS2 21.43 36.00 23.81 52.63 19.05 53.33 16.67 70.00 
SSI 53.85 61.40 63.08 62.12 70.77 62.16 81.54 59.55 
DGP 40.54 53.57 45.95 58.62 45.95 54.84 40.54 60.00 
CUP 89.09 94.23 96.36 94.64 92.73 92.73 98.18 91.53 
AGF 53.13 34.00 43.75 34.15 50.00 42.11 43.75 58.33 
CFP 57.63 68.00 66.10 69.64 74.58 70.97 86.44 68.92 
INF 90.91 90.91 90.91 100.00 90.91 100.00 90.91 100.00 
WAT 100.00 78.57 100.00 78.57 100.00 73.33 100.00 78.57 
NVL 75.00 100.00 75.00 100.00 66.67 100.00 75.00 100.00 
0 A 60.90 65.96 66.49 71.01 
KA 0.5629 0.6176 0.6219 0.6706 

images--Landsat ETM + panchromatic or Radarsat data-is helpful in improving 
classification accuracies. In particular, the combination of data fusion and textures 
from both panchromatic and Radarsat data improved overall accuracies by 5.8% to 
6.9% if compared to ETM-ALL. 

5. Discussion and conclusion 

Vegetation classification in the moist tropical region, especially of land-cover types 
like SS2 and SS3, is very difficult, but the use of textures is an effective approach for 
im~rovement. Indeed. a combination of textures and image data fusion eenerallv - - 
improved classification accuracy by approximately 5.&6.9% when compared to 
using the original Landsat ETM+ spectral images. On the contrary, the data fusion 
based on Landsat ETM+ multispectral and panchromatic data or Radarsat data 
did not effectively improve classification accuracies. 
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Table 3. (Continued) 

Radar-fusion- Radar-fusion- Radar-fusion- 
Radar-fusion Radartxt Pantxt PanRadartxt 

T v ~ c  PA% UA% PA% UA% PA% UAYo PA% UA% . . 
UPF 84.62 95.65 
LLF 92.31 80.00 
SS3 76.92 25.64 
SS2 26.19 47.83 
SSI 55.38 61.02 
DGP 45.95 58.62 
CUP 90.91 96.15 
AGF 56.25 36.00 
CFP 62.71 71.15 
INF 90.91 90.91 
WAT 100.00 78.57 
NVL 75.00 100.00 
OA 64.63 

PA, producer's accuracy; UA, user's accuracy; OA, overall accuracy; KA, kappa coefficient. 
UPF, upland forest; LLF, lowland forest; SS3, advanced successional vegetation; SS2, 
intermediate successional vegetation; SS1, initial successional vegetation; DGP, degraded 
pasture; CUP, cultivated pasture; AGF, agroforestry; CFP, coffee plantation; INF, 
infrastructure; WAT, water; NVL, non-vegetation lowland. 

The complex forest stand structures and abundant tree species may be the most 
important factors inducing difficulty of vegetation classification in the Amazon. For 
example, the smooth transition between stages of successional vegetations and the 
spectral confusion between successional vegetations and agroforestry makes their 
classification accuracies poor. Agroforestly is a complex category, including a 
variety of productive arrangements based on the association of two or more species. 
Another problem is the difficulty in collecting sufficient training and test samples for 
some vegetation classes, especially for successional stages. In this study area, the 
lack of typical SS3 samples is an important factor resulting in poor SS3 classification 
accuracy. The selected SS3 samples are mainly in younger stages of SS3 and are 
often confused with old SS2 vegetation because of their similar vegetation stand 
structure. 

This research has shown that texture measures represent an important factor 
in improving land-cover classification accuracies. One critical step is to identify 
suitable textures that provide the best separability for the landcover classes. 
However, selection of suitable textures is a challenge because textures vary with the 
characteristics of the landscape under investigation and images used. Identifying 
suitable textures involves the selection of appropriate texture measures, moving 
window sizes, and image bands (Franklin et a1 1996, Chen el al. 2004). Not all 
texture measures can improve classification performance. Even for the same texture 
measure, selecting the appropriate window size and spectral band is crucial. The 
BTC approach provides an easy way to identify the best combination of textures to 
improve classification performance based on the separability of land-cover classes 
and correlation coefficients between the selected textures. 

The data fusion image enhanced visual interpretation through the incorporation 
of high spatial resolution information in the fused dataset. However, data fusion 
may decrease classification accuracy, especially for the vegetation types with lack of 
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obvious stand structures, such as SSI and DGP in this study. The major reason may 
be that data fusion increases the variation within the same vegetation class. On the 
contrary, textures make use of the spatial information inherent in the image and 

IC reduce the spectral variation. Thus, use of data fusion and texture benefits the land- 
0 
R cover classification. . . 
& 
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