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ABSTRACT

Mapping and monitoring land degradation in areas under human-induced stresses have become urgent tasks in remote sensing
whose importance has not yet been fully appreciated. In this study, a surface cover index (SCI) is developed to evaluate and map
potential land degradation risks associated with deforestation and accompanying soil erosion in a Western Brazilian Amazon
rural settlement study area. The relationships between land-use and land-cover (LULC) types and land degradation risks as well
as the impacts of LULC change on land degradation are examined. This research indicates that remotely sensed data can be
effectively used for identification and mapping of land degradation risks andmonitoring of land degradation changes in the study
area. Sites covered by mature forest and advanced successional forests have low land degradation risk potential, while some
types of initial successional forests, agroforestry/perennial agriculture and pasture have higher risk potential. Deforestation and
associated soil erosion are major causes leading to land degradation, while vegetation regrowth reduces such problems.
Copyright # 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Land degradation has long been recognised as a critical ecological and economic issue due to its impacts on food

security and environmental conditions. It involves physical, chemical and biological processes. Physical processes

include alterations in soil structure, environmental pollution and unsustainable use of natural resources; chemical

processes include acidification, leaching, salinisation, decrease in cation retention capacity and fertility depletion and

biological processes include reduction of biomass and biodiversity (Eswaran et al., 2001). In general, land degradation

is a slow, almost imperceptible, process that is often neglected or goes unnoticed by the local population, at least during

its initial stage. However, when land is in a state of advanced degradation, restoration becomes difficult and/or requires

a considerable investment for mitigation. The causes of land degradation are diverse and reflect complex interactions.

Different regions may have significantly different drivers of land degradation, including biophysical, socioeconomic

and political factors. Natural hazards, population change, marginalisation, poverty, land ownership problems, political

instability and maladministration, economic and social issues, health problems and inappropriate land use are among

some factors cited in the literature (Barrow, 1991, Johnson and Lewis, 1995). Barrow (1991) summarised the reasons
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causing land degradation in different environments, such as rainforests, seasonally dry tropical, Mediterranean,

temperate, wetlands, tundra, islands and dry lands.

Different definitions of land degradation are used in previous literature. For example, FAO (1980) defines land

degradation as deterioration or total loss of the productive capacity of the soils for present or future use. Barrow

(1991) defines it as the loss of utility or potential utility or the reduction, loss or change of features or organisms that

cannot be replaced. Eswaran et al. (2001) defines it as the loss of actual or potential productivity or utility as a result

of natural or anthropic factors; that is, the decline in land quality or reduction in its productivity. Different regions

may present different forms of land degradation, such as depletion of soil nutrients, salinisation, agrochemical

pollution, soil erosion and biodiversity loss (Scherr and Yadav, 2001). This makes the evaluation of land

degradation a difficult task because of the lack of effective methods and suitable criteria to quantitatively analyse

the process.

The criteria for assessing land degradation may be physical/biological (e.g. reduced genetic diversity, species

extinction, soil erosion and pollution) and socioeconomic (e.g. farm productivity decline, increased water treatment

cost, lack of infrastructure and labour scarcity) (Wasson, 1987). In practise, different indicators, such as soil erosion

and soil fertility decline, salinisation and loss of vegetation cover, are often used to assess the status of land

degradation. Stocking and Murnaghan (2001) provided many indicators of soil loss and of production constraints

and combined indicators for the evaluation of land degradation.

Different methods have been used for land degradation studies, including field observation and evaluation, expert

judgement (Sonneveld, 2003) and use of remote sensing and GIS approaches (Amissah-Arthur et al., 2000, Sujatha

et al., 2000, Haboudane et al., 2002, Thiam, 2003, Wessels et al., 2004). Remote sensing techniques provide

important tools for generating information on land degradation status and its geographical extent (Eiumnoh, 2001,

Symeonakis and Drake, 2004, Wessels et al., 2004). For example, Amissah-Arthur et al. (2000) used SPOT data,

combined with biophysical (e.g. soil quality) and socioeconomic data (e.g. land use intensity, population density

and carrying capacity and agricultural intensification) to assess land degradation status in African Sahel. Sujatha

et al. (2000) used Landsat MSS and TM data to map and monitor degraded lands caused by water logging and

subsequent salinisation /alkalinisation in Uttar Pradesh, India, based on visual interpretation of multitemporal

images. Haboudane et al. (2002) used indices describing the spectral response and behaviour to map the spatial

distribution of regional patterns of land degradation in Guadalentin basin in southeastern Spain. Almeida-Filho and

Shimabukuro (2002) used multitemporal TM data to map and monitor evolution of degraded areas caused by

independent gold miners, based on images segmentation/region classification techniques and post-classification

comparison, in the Roraima State, Brazilian Amazon. Thiam (2003) used AVHRR NDVI image in combination

with rainfall, soil types, human impact areas and field survey data to assess the risk of land degradation in southern

Mauritania.

Most previous research on land degradation was conducted in semiarid or arid environments (Hoffman and Todd,

2000, Taddese, 2001, Symeonakis and Drake, 2004). A combination of remotely sensed classification results and

associated ancillary data is often used to map land degradation, but marginal classification results and availability of

high-quality ancillary data often reduces its success. In the Brazilian Amazon, policies encouraging large-scale

development projects and land conversion are major factors contributing to deforestation (Barbier, 1997), leading

to changes in soil structure, loss of soil fertility and soil erosion. Mapping and monitoring land degradation has

become an urgent task in this region, but such studies have not attracted sufficient attention yet. Land degradation in

the Amazon basin is mainly caused by deforestation and associated soil erosion; thus, a key to exploring land

degradation risk relationships requires good land-use and land-cover (LULC) types and an understanding of

relationships between LULC and land degradation risks. Hence, this paper explores an approach based on the

Surface Cover Index (SCI) to quickly evaluate and map land degradation risks.

STUDY AREA

The study area, located in northeastern Rondônia, is approximately 1600 km2 (36�5� 44�0 km) (Figure 1).

Settlement began in the early-1980s and deforestation occurred as a result of land use and occupation. Colonists
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have transformed the forested landscape into a mosaic of cultivated crops, pastures and different stages of

secondary succession and forest remnants. The terrain is undulating, ranging from 100 to 350m above sea level.

Several soil types, such as alfisols, oxisols, ultisols and alluvial soil orders, have been identified (Bognola and

Soares, 1999). Awell-defined dry season lasts from June to August. The annual average precipitation is 2016mm,

and the annual average temperature is 25�58C (Rondônia, 1998).

METHODS

Figure 2 illustrates the framework for mapping and monitoring land degradation risks using multitemporal Landsat

TM/ETMþ images. The major steps include (1) image preprocessing, including geometric rectification, image

registration and atmospheric correction; (2) LULC classification using a maximum likelihood classifier (MLC);

(3) LULC change detection using a post-classification comparison approach; (4) development of fraction images

using the spectral mixture analysis (SMA) approach; (5) mapping of land degradation risks based on a SCI;

(6) monitoring of land degradation trends; (7) examination of relationships between land degradation risks and

LULC types and (8) examination of interactions between LULC change and land degradation trends.

Data Collection and Preprocessing

Fieldwork was conducted during the dry seasons of 1999, 2000, 2002 and 2003. Preliminary image classification

and band composite printouts were used to identify candidate areas to be surveyed, and a flight over the areas

provided visual insights about the size, condition and accessibility of each site. The surveys were conducted in areas

with relatively homogeneous ecological conditions (e.g. topography, distance fromwater and land use) and uniform

physiognomic characteristics. Secondary succession, mature forest, pasture and agroforestry/perennial agriculture

Figure 1. Location of Machadinho d’Oeste in the State of Rondônia, Brazil.
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plots were identified during fieldwork. Every plot was registered using a global positioning system (GPS) to allow

integration with other spatial data in geographic information systems (GIS) and image processing systems. A

detailed description of field data collection is provided in Lu et al. (2004a). Field data were separated into two

groups, one for training samples used in the maximum likelihood classification, and another for test samples for

classification accuracy assessment of the 1998 TM and 2002 ETMþ images.

Four dates of Landsat TM/ETMþ data were used in this study. Landsat 5 TM data that were acquired on 18 June

1998, were first geometrically rectified using control points taken from topographic maps at 1:100 000 scale

(Universal Transverse Mercator, South 20 zone). The other three dates of images (i.e. 28 July 1988 TM; 15 July

1994 TM and 27 June 2002 ETMþ) were registered to the same coordinates as the 1998 TM image. A nearest-

neighbour resampling technique was used when implementing geometrical rectification and image registration. A

root-mean-square error of less than 0�5 pixels for each registration process was obtained. An improved image-based

dark object subtraction model was used to implement radiometric and atmospheric correction (Chavez, 1996, Lu

et al., 2002). The surface reflectance values after calibration ranged from 0 to 1. For the convenience of data

analysis, the reflectance values were rescaled to the range between 0 and 100 by multiplying the value of 100 to

each post-calibration pixel.

Image Classification and Change Detection

Before implementing classification for the 2002 ETMþ data, training sample plots were selected based on field data

collected in 2002. LULC classes included mature forest, secondary succession, agroforestry/perennial agriculture,

pasture, infrastructure and water. For each class, 15 to 20 training samples were selected and then a maximum

likelihood classifier (MLC) was used to classify the 2002 ETMþ data into a thematic map. A similar procedure was

used to classify the other three dates of TM images. The samples used to classify the 1998 TM image were collected

in 1999 and 2000, that is, a majority of successional forests, agroforestry/perennial agriculture and pasture sample

plots were collected during the fieldwork in 1999, and more sample plots of other different land cover classes were

collected during fieldwork conducted in 2000. Because of the similar spectral signatures found for agroforestry and

secondary succession stages, visual interpretation of TM/ETMþ is often not suitable to identify these classes,

thereby harming the collection of sufficient training sample data for the 1994 and 1988 image classifications. For the

purposes of this study, agroforestry and successional forests are combined as a single class, SS_AgF, out of necessity,

realising that their separation is desirable whenever possible. However, based on field data in the study area, it is

evident that similar vegetation stand structure and density between agroforestry and successional forests exist that

have similar function in protecting land from degradation. Moreover, most of the agroforestry sites include

vegetation in some stage of succession. Local land owners believe that using particular successional species such as

Cecropia sp. for shading is a good practise for their agroforestry systems. Therefore, the training samples for mature

forest, SS_AgF, pasture, infrastructure and water were mainly collected based on visual interpretation of colour

composites for 1994 and 1988 TM image classifications. Interviews with local land owners were conducted to

understand land use history and to check the accuracy of the selected training samples. After classification, a

Figure 2. Framework for mapping and monitoring land degradation risks.
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majority filter with 3� 3 window size was used to remove the ‘‘salt and pepper’’ effect on the classified images. A

detailed description of MLC approach for LULC classification in the study area is found in Lu et al. (2004a).

Accuracy assessment is required for evaluating the classification results. A commonmethod is through the use of

an error matrix. Many parameters, such as overall accuracy, producer’s accuracy, user’s accuracy and Kappa

coefficient, can be derived from the error matrix. Previous literature has detailed the accuracy assessment

procedures (Congalton et al., 1983, Congalton, 1991, Smits et al., 1999, Foody, 2002). In this paper, accuracy

assessment was implemented for the 1998 and 2002 classified images using an IKONOS image acquired on 28May

2001 and field data collected in 2000 and 2003, respectively. A total of 320 test sample plots were selected for 1998

and 365 test sample plots for 2002. However, no accuracy assessment was performed for 1988 and 1994 because of

the difficulty in collecting sufficient reference data.

Although many change detection approaches have been developed (Singh, 1989, Lu et al., 2004b), the post-

classification comparison approach is still often used for detecting LULC trajectories. Such approach was also used

in this research. Four classes (i.e. forest, SS_AgF, pasture and non-vegetation) were used in the vegetation change

detection analysis and land degradation analysis. Five change trajectories were identified, that is, (1) from mature

forest to SS_AgF, (2) from mature forest to pasture, (3) from SS_AgF to pasture, (4) from pasture to SS_AgF and

(5) other changes such as the conversion of different LULC classes to infrastructure or to water. Three change

detection images were generated based on a pixel-by-pixel comparison approach of two classified images between

1988 and 1994, between 1994 and 1998 and between 1998 and 2002, respectively. The accuracy assessment for the

1998–2002 change detection result was conducted based on field data collected in 2000 and 2003, respectively.

Accuracy assessments for the remaining two change detection periods were not implemented because of the

difficulty in collecting time-series reference data.

Development of Fraction Images

Spectral mixture analysis (SMA) is regarded as a physically based image processing tool. It supports repeatable and

accurate extraction of quantitative subpixel information (Smith et al., 1990). The SMA approach assumes that the

spectrum measured by a sensor is a linear combination of the spectra of all components (endmembers) within the

pixel and the spectral proportions of the endmembers reflect proportions of the area covered by distinct features on

the ground (Adams et al., 1995). The mathematic model of SMA can be expressed as

Ri ¼
Xn
k¼1

fkRik þ "i (1)

where i¼ 1, . . . , m (number of spectral bands); k¼ 1, . . . , n (number of endmembers); Ri is the spectral reflectance

of band i of a pixel, which contains one or more endmembers; fk is the proportion of endmember k within the pixel;

Rik is known as the spectral reflectance of endmember kwithin the pixel on band i, and "i is the error for band i. For a
constrained unmixing solution, fk is subject to the following restrictions:

Xn
k¼1

fk ¼ 1 and 0 � fk � 1 (2)

The root mean square error (RMSE) is often used to assess the fit of the model. The RMSE is computed based on

errors and number of spectral bands used, that is,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

"2i

 !�
m

vuut (3)

In the SMA approach, selecting sufficiently high-quality endmembers is a key for successfully developing high-

quality fraction images. Many factors, such as the purpose of the study, image data used, the scale and complexity
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of landscape in the study area and the analyst’s knowledge and skills, can affect the selection of endmembers. Many

methods for endmember selection have been developed (Smith et al., 1990, Settle and Drake, 1993, Bateson and

Curtiss, 1996, Tompkins et al., 1997, Mustard and Sunshine, 1999, van der Meer, 1999, Dennison and Roberts,

2003, Theseira et al., 2003), but the image-based endmember selection approach is preferred because

endmembers can be easily obtained and they represent the spectra measured at the same scale as the image data.

In general, image endmembers are derived from the extremes of the image feature space, assuming they

represent the purest pixels in the images (Mustard and Sunshine, 1999, Lu et al., 2003). In this study, three

endmembers (i.e. green vegetation, shade and soil) were selected based on the scatterplots of TM/ETMþ bands

3 and 4 and TM/ETMþ bands 4 and 5. After determination of endmembers, a constrained least-squares solution

was used to unmix the multispectral images into three endmember fraction images. The same method was used

to unmix each date of multispectral TM/ETMþ images into shade, green vegetation and soil fraction images,

respectively.

Mapping and Monitoring Land Degradation Risks

The factors affecting land degradation often vary depending on the characteristics of specific study areas because

different regions may have significantly different causes inducing land degradation. In the Brazilian Amazon basin,

deforestation associated with high temperature and precipitation is an important factor inducing soil erosion and

rapid loss of soil nutrients, resulting in land degradation. In general, vegetation cover and vegetation stand structure

are important factors protecting land from degradation. Dense vegetation cover associated with multiple layers of

stand structure can effectively intercept raindrops, minimising their impact on soils and consequent erosion

processes. In tropical rainforests, most soils have low fertility; therefore, nutrient cycling is an important

mechanism for ecosystem maintenance. High temperature and humidity lead to a rapid turnover of nutrients

between vegetation, litter and soil. Severe land degradation problems can occur if vegetation cover is removed or

disturbed, because it plays an important role in maintaining soil structure and nutrient cycling (Lavelle, 1987,

Moran et al., 2000).

The loss of soil by erosion may be a good indicator for evaluating land degradation in the Brazilian Amazon.

However, the estimation of soil erosion losses is often difficult because of interplaying factors, such as topography,

ground cover and precipitation. In particular, mapping of soil erosion losses over large areas is a challenging task,

requiring a remote sensing-based approach for rapidly mapping the potential risks of land degradation. Land cover

features captured by remote sensors provide a powerful insight for land degradation research. It is well known that

high vegetation density associated with a complex stand structures can effectively reduce soil loss by erosion. For

densely advanced successional forests or mature forest, the soil erosion is very limited, but after deforestation, the

uncovered land can result in high soil erosion rates and rapid land degradation. An index representing land cover

surface conditions may be useful for rapidly assessing land degradation risks. Such land cover surface information

can be developed from remotely sensed data. In this paper, it is assumed that land degradation risk is minimal in

advanced successional forests and mature forests. For other vegetation classes, a SCI is designed to evaluate the

potential risk of land degradation. The index is defined as:

SCI¼ 0, when fgv is greater than 70 per cent and fshade is greater than 20 per cent,

otherwise; SCI ¼ 1

2
ð1þ fsoil � fgv � fgv � fshadeÞ � 100 (4)

where fsoil, fgv and fshade are the proportions of soil, green vegetation and shade in a unit, respectively. They meet

the following conditions: fsoilþ fgvþ fshade¼ 1 and all of them range from 0 and 1. The SCI ranges from 0 to 100.

When the site is covered with dense vegetation, such as dense pasture or grass, fgv is close to 1 and fsoil and fshade
are close to 0, then SCI is close to 0. When the site is covered with no or very little vegetation, fsoil is close to 1, fgv
and fshade is close to 0, then SCI is as high as 100. Higher SCI values indicate higher potential risk of land

degradation. The variables used in the SCI equation are derived from the Landsat TM/ETMþ data based on the

SMA approach.
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Linking Land Degradation Risks to LULC Data

The SCI was calculated based on fraction images for each analysed date. The SCI values for typical LULC classes,

such as mature forest, initial (SS1), intermediate (SS2) and advanced (SS3) successional forests, coffee plantation

and pasture, were analysed in 2002 and 1998 SCI images. A detailed description of stand structure among the

successional forest stages is found in Lu et al. (2003). The analysis of SCI values for the typical land cover classes

indicates that the majority of mature forest and SS3 have SCI values of less than 30; the majority of SS1, SS2 and

coffee plantation have SCI values between 30 and 50; and most pasture and some SS1 areas have SCI values greater

than 50. Therefore, three levels of land degradation risks, that is, low, medium and high, were defined when SCI

value falls between 0–30, 30–50 and 50–100, respectively. A SCI ranked image was generated for each date based

on such thresholds. The ranked SCI images and corresponding LULC classification images were then integrated in

a GIS. They were compared on a pixel-by-pixel basis, generating the statistical results that demonstrate the

relationships between land degradation risks and LULC types.

Before analysing the change of land degradation risks, that is, increasing or decreasing risks, it is required to give

a definition of the change trajectories of land degradation risks. If a site with low degradation risk at a prior date is

changed to medium or high risk at a later date, this site is defined as increasing degradation risk. In contrast, if a site

with high or medium degradation risk at a prior date is changed to medium or low risk at a later date, this site is

defined as decreasing degradation risk. Thus, the spatial distribution of increasing or decreasing risks can be

illustrated in an image through implementing the comparison of two ranked SCI images. In order to examine how

different LULC changes affect land degradation risk trends, a pixel-by-pixel comparison of LULC change image

and the corresponding SCI change image for the same period is conducted and the statistical results are produced

for analysing the impacts of LULC changes on land degradation risks.

Validation of the Land Degradation Risk Maps

Validation of a model is an important aspect of evaluating its performance. The determination of thresholds used for

classifying land degradation risk levels greatly depends on availability of ground reference data. Because of the

lack of reference data, quantitative validation of the land degradation risk results was not implemented in this study.

However, visual interpretation of the land degradation risk maps was conducted by an expert who had worked in the

study area for many years. This article’s primary focus is to develop a theoretical approach to rank land degradation

risks using elements of spectral mixing theory that emphasises the land components of green vegetation, soil/bare

and shade/shadow in an Amazonian environment. Although informative, this research can be considered as

preliminary. Further studies are needed in search of more advanced and universal models based on the integration of

remotely sensed and ground reference data.

RESULTS

Image Classification and Change Detection Results

Figure 3 illustrates the classification results for the analysed dates. A comparison between these images indicates

that the area covered by mature forest was significantly reduced from 1988 to 1994, and until 2002. However,

different stages of successional forests, agroforestry and pastures occupied the deforested areas. Accuracy

assessment indicates that overall accuracies of greater than 91 per cent are achieved for the 1998 TM and 2002

ETMþ image classifications including five LULC classes. Although the accuracies for the 1994 and 1988 TM

image classifications are not known, visual comparison of the classification image with corresponding TM colour

composite and responses from interviews with local land owners indicate that the classifications are satisfactory for

the purposes of this study. The results for LULC classifications are summarised in Table I. The value for each LULC

class represents its percentage accounted for the study area. In this study, the total area is 1602�21 km2. The mature

forest decreases approximately 37 per cent for the period analysed, from 88 per cent in 1988 to 51 per cent in 2002.

The SS_AgF increases approximately 32 per cent during the same period. Pasture and non-vegetation

(infrastructure and water) areas also increase from 1988 to 2002.
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Figure 3. Mapping of land-use and land-cover distributions using Landsat TM/ETMþ images (A: 1988; B: 1994; C: 1998 and D: 2002).

Table I. A summary of percentages of areas for Landsat TM/ETMþ image classification results among different dates

Classes 1988 1994 1998 2002

Forest 87.94 73.79 60.25 51.22
SS_AgF 2.68 13.67 24.88 34.85
Pasture 8.50 11.53 13.77 11.68
Nonvegetation 0.88 1.01 1.10 2.25

Note: SS_AgF includes different successional stages and agroforestry/perennial agriculture; and Nonvegetation includes infrastructure and water
classes.
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Plate 1. Monitoring of land-use and land-cover change using multitemporal Landsat TM/ETMþ images (A: between 1988 and 1994;
B: between 1994 and 1998 and C: between 1998 and 2002).
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The land cover change detection results are illustrated in Plate 1. Between 1988 and 1994, the major change is

due to the conversion of mature forest to SS_AgF and pasture. During the periods of 1994–1998 and 1998–2002,

many deforested areas are occupied by different stages of SS_AgF and pasture. The accuracy assessment for the

1998–2002 change detection result indicates that an overall accuracy of approximate 85 per cent for the five change

trajectories is obtained. The quantitative land cover changes are summarised in Table II. The average annual

deforestation rates (conversion of mature forest to agroforestry or pasture or succession) are 2�34 per cent, 3�55 per
cent and 2�7 per cent for the three change detection periods between 1988 and 2002. These deforestation rates are

much higher than for the entire Rondonia State or the entire Brazilian Amazon (which ranges from 0�61 per cent to
1�65 per cent, and from 0�3 per cent to 0�54 per cent between 1988 and 2000, respectively except in 1995 when the
rate was 2�62 per cent for Rondonia and 0�8 per cent for Amazonia) (Instituto Nacional de Pesquisas Espaciais

(INPE, 2002)). The transform rates between SS_AgF and pasture also increase during these change detection

periods. For example, the annual change rate from SS_AgF to pasture or from pasture to SS_AgF was 0�84 per cent
between 1988 and 1994, 1�79 per cent between 1994 and 1998 and 2�25 per cent between 1998 and 2002. Usually,
the most common initial land cover following deforestation is pasture or crops. After a few years, land can be

abandoned initiating a fallow cycle. Shrubs and trees gradually dominate until an advanced succession stage is

achieved if no disturbance occurred. However, at any successional stage, human activities can interrupt the

regeneration process by reintroducing crops, cattle ranching and perennial agriculture or agroforestry.

Analysis of Land Degradation Risk

Figure 4 shows the ranked SCI images for the four analysed dates. An obvious finding from these SCI images is that

most of the study area has low potential risk of land degradation. However, the areas with medium and high

potential risks of land degradation increased significantly from 1988 to 2002. In 1988, the majority of the study area

was covered by mature forest and high-risk areas are mainly located in the deforested areas along the road system.

As deforested areas increase, the high-risk patches also increase. This is particularly visible in the 2002 SCI image

that implies deforestation is an important factor leading to the land degradation.

An integrative analysis of the SCI images and corresponding LULC classification images for each date reveals

relationships between potential risk of land degradation and land cover types. Table III summarises the statistical

results of area percentages for each SCI rank level and corresponding LULC types. Non-vegetation (infrastructure

and water) was not included because the interest on land degradation risks was focused on forest, successional

stages, agricultural lands and pasture lands. Analysis of the results indicated that the area of low risk decreased

from approximately 92�1 per cent in 1988 to 73�6 per cent in 2002. Conversely, the area of high risk increased from
approximately 4�0 per cent in 1988 to 9�0 per cent in 2002, and the area of medium risk increased from

Table II. A summary of change detection results (percentage of area for each category)

Categories Change detection periods

1988–1994 1994–1998 1998–2002

Unchanged classes
Forest 74.05 59.91 49.74
SS_AgF 1.30 9.40 19.41
Pasture 4.16 6.78 7.03
Nonvegetation 0.88 0.86 1.19

Change trajectory
Forest to SS_AgF 8.06 10.76 9.42
Forest to Pasture 6.03 3.46 1.38
SS_AgF to Pasture 1.09 3.15 3.18
Pasture to SS_AgF 3.95 4.01 5.83
Other changes 0.48 1.67 2.82
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approximately 2�0 per cent to 13�7 per cent in the same period. Most of pasture and some SS_AgF classes were

found in the medium and high land degradation risk categories.

A comparison of ranked SCI images between different dates can be used to demonstrate the spatial distributions

of the change in land degradation risks, as illustrated in Plate 2. The areas with increasing degradation risk increase

significantly from 1988 until 2002, especially between 1998 and 2002. These results are summarised in Table IV.

For unchanged SS_AgF or pasture vegetation during the change detection periods, both increasing and decreasing

risks occurred. The short-term rotation periods between successional forests and/or agroforestry, the disturbance or

growth in the successional forest stages cause the change of degradation risks. For example, successional forest

growth from initial to intermediate successional stages reduces the risk of land degradation, but the human induced

disturbance causing the transform of intermediate stage to initial successional stage increases the risk of land

degradation. The long term overgrazing on the pasture lands can make the pasture conditions poor, increasing the

risks of land degradation. For changed vegetation areas, deforestation (conversion of mature forest in prior date to

Figure 4. Mapping of land degradation risks using Landsat TM/ETMþ images (A: 1988; B: 1994; C: 1998 and D: 2002).
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pasture, successional forests or agroforestry in a late date) and changes of successional forests or agroforestry to

pasture are the main causes of land degradation. The transformation of pasture to successional forests may reduce

the degradation risks. Between 1988 and 1994, 7�87 per cent of the study area had increased degradation risks that
increased to 8�24 per cent between 1994 and 1998, and grew to 16�52 per cent between 1998 and 2002. Areas with
decreasing degradation risks changed from 4�28 per cent to 6�39 per cent during the period of 1988 and 2002. The

degradation trend is obviously indicating deterioration as deforestation increased. Table IV also indicates that the

conversion from mature forest to SS_AgF or pasture, and from SS_AgF to pasture have a higher possibility to

Table III. A comparison of land degradation risk areas among vegetation types in different dates (percentages of area)

Year Classes Low Medium High

1988 Forest 86.92 0.59 0.18
SS_AgF 2.46 0.11 0.03
Pasture 2.68 1.34 3.76
Total 92.06 2.04 3.97

1994 Forest 73.26 0.38 0.03
SS_AgF 11.62 1.87 0.01
Pasture 2.36 5.26 3.34
Total 87.24 7.51 3.38

1998 Forest 59.74 0.33 0.05
SS_AgF 21.00 2.95 0.32
Pasture 3.91 4.96 4.31
Total 84.65 8.24 4.68

2002 Forest 50.90 0.16 0.03
SS_AgF 22.43 9.91 1.57
Pasture 0.28 3.60 7.43
Total 73.61 13.67 9.03

Note: The total percentage was not 100 because urban and water areas were excluded in this study.

Table IV. Relationships between land degradation risk change and vegetation change

Period Category Risk level Unchanged classes Change trajectories Total

MF SS_A P MF to SS_A MF to P SS_A to P P to SS_A

From 1988
to 1994

Unchg risk Low 73.188 1.064 0.336 6.881 1.114 0.267 0.941 83.791
Medium 0.043 0.007 0.344 0.036 0.078 0.020 0.100 0.627
High 0.001 0.000 0.426 0.000 0.012 0.002 0.002 0.443

Chg risk Decr. risk 0.271 0.054 1.323 0.181 0.057 0.015 2.379 4.281
Incr. risk 0.348 0.127 1.186 0.850 4.478 0.719 0.166 7.875

From 1994
to 1998

Unchg risk Low 59.196 7.191 0.647 8.940 0.549 0.966 0.558 78.047
Medium 0.017 0.228 1.326 0.017 0.014 0.175 0.421 2.198
High 0.000 0.000 0.595 0.000 0.001 0.001 0.023 0.620

Chg risk Decr. risk 0.200 1.069 2.317 0.104 0.009 0.135 2.558 6.392
Incr. risk 0.324 0.634 1.383 1.473 2.756 1.734 0.117 8.421

From 1998
to 2002

Unchg risk Low 49.263 11.983 0.055 5.663 0.042 0.096 0.742 67.845
Medium 0.010 0.763 0.873 0.050 0.009 0.136 0.855 2.696
High 0.000 0.014 1.173 0.001 0.002 0.018 0.129 1.337

Chg risk Decr. risk 0.158 1.764 0.587 0.098 0.001 0.022 2.646 5.276
Incr. Risk 0.165 4.002 3.974 3.389 1.275 2.715 0.997 16.517

Note: MF, mature forest; SS_A, successional forests and agroforestry/perennial agriculture; P, pasture; Unchg or Chg risks, unchanged or
changed risks; Decr. risk or Incr. risk, decreasing or increasing land degradation risk.
The total percentage in this table was not 100 because urban and water areas were excluded in this study.
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induce land degradation, but the change from pasture to SS_AgF can reduce the degradation risks, that is, protecting

land from degradation. Conversely, for the unchanged SS_AgF or pasture areas, land can be degraded also because

of soil erosion or improper land use.

DISCUSSION AND CONCLUSION

Land degradation assessment is a challenging task and has not obtained sufficient attention in the Amazon basin.

The complexity and interplay of drivers causing land degradation vary in different sites, thus there is lack of a

suitable approach to implement land degradation assessments. This paper develops a new approach based on purely

remote sensing techniques for mapping and monitoring of land degradation risks in a Western Brazilian Amazon

study area. It is found that remotely sensed data have the potential to provide new insights for rapidly assessing land

degradation risks in large areas. Although detailed assessments of land degradation risk results are not conducted in

this paper, visual analyses of the results have indicated that the developed land degradation risk maps appear to be

very reasonable and represent the real situation where land cover change increases or decreases land degradation

risks. Comparisons between the land degradation risk maps and corresponding land cover classes, or between the

land degradation trend images and land cover change trajectories show the promise in use of the SCI approach for

evaluating land degradation risk in this study area. The identified relationships between land degradation risks and

LULC types and impacts of LULC change on land degradation risks is a first step in providing the foundation for

better planning and managing land resources. Understanding these relationships is helpful for better using land

resources after deforestation. Some possible applications and implications of this land degradation risk approach

may include public policies regarding land management and conservation, land zoning (which has been a major

discussion in the Amazon, particularly in Rondônia) and agricultural practises and extension. The approach

developed in this paper may describe possible risks from these processes of land occupation and monitor the

potential risk trends caused by LULC changes.

Research on land degradation in the Amazon basin has an important role for better management and utility of

land resources. This study indicates that deforestation and associated land degradation by soil erosion should be

evaluated and monitored. Hence, soil erosion, loss of soil fertility and biomass depletion may be used as indicators

for such evaluations. However, the development of these indicators based on field surveys for large areas is not an

easy task. Thus, an effective approach to assess this phenomenon is required. The SCI approach developed in this

paper is a contribution for mapping and monitoring land degradation risks in the Amazon. In general, land

degradation is related to soil conditions, topographic factors and land use history, in addition to the land cover

surface characteristics. A combination of SCI and other ancillary data may improve the effectiveness of land

degradation evaluation through the development of suitable expert systems or rules. Caution must be taken when

the SCI equation is used to other study areas because of their different land cover features and patterns, soil

conditions, climates and human activities. Also, remotely sensed data capture the surface features at the time when

images are acquired, thus they cannot represent the average status of land degradation within a year. Different

seasons may influence the proportions of soil and vegetation in a unit, thus, increasing the temporal resolution of

remotely sensed data used in land degradation assessments in order to avoid biases caused by seasonal variations is

recommended.

The model used in this paper is only based on three endmembers. For many cases, three endmembers are not

sufficient, especially in complex environments. In moist tropical forest areas, vegetation stand structure and species

composition are very complex. For an optical satellite sensor such as Landsat TM, the sensor mainly captures

information from the leaves, wood and shadowing information for a dense vegetation area. However, for sparse

vegetation, soil and litter also can significantly affect reflectance. Not all components selected are resolvable in a

given image because of their mixing nature and the degree of spectral contrasts found within pixels. For TM

images, high correlations between TM bands limit the number of endmembers to be used in the SMA approach.

Also, selecting more than three endmembers is often difficult based on the image-based endmember selection

approach. The image endmember method assumes that true endmembers are contained in the data set used, but in

practise, this assumption is not always true, depending on the scale and characteristics of the study area. Hence, it is
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necessary to use reference endmembers to link image endmembers to actual target materials. A combination of

image and reference endmember selection methods, including a spectral alignment of the image endmembers to the

reference endmember spectra, and a calibration relating the image endmembers to the reference endmembers has

been used to identify four endmembers, including vegetation, shade, non-photosynthetic vegetation (NPV) and soil

in the Amazon land cover classification (Adams et al., 1995, Roberts et al., 1998). The inclusion of NPV may

improve the quality of fraction images, especially the soil fraction image because the NPV component is often

contained in the soil fraction image if NPV endmember is not used in the SMA approach (Roberts et al., 1998).

Hence, in the SCI equation, the SCI value may be overestimated because of the influences of NPV factor.
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