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Abstract: The ability to map and monitor leaf area index throughout the Amazon
Basin is important to assess and predict environmental degradation. This study
measured leaf area index (LAI) values at 64 locations characteristic of many differ-
ent cover types including mature forest, secondary succession, pasture, cropped
land, barren land, and urban area throughout the Santarem, Brazil area. The field
data were used in conjunction with ASTER visible and infrared data to compare the
accuracy of multiple regression and artificial neural network models for LAI predic-
tion. Assessments of model accuracy were determined by calculating RMSE.
Results indicate that artificial neural networks are more accurate than traditional
statistical techniques to estimate LAI in this part of the Amazon Basin. In addition, it
was found that lower LAI values modeled the poorest because of a mix of spectral
signatures.

INTRODUCTION

Many environmental changes in the Amazon have been attributed to human colo-
nization and settlement. For example, the Brazilian Amazon state of Rondonia has
experienced much deforestation over the past four decades, when many people
migrated into the region and set up agricultural fields and cattle ranches. The main
result of this migration was massive deforestation, with very little economic reward
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for the farmers and ranchers (Dale et al., 1993). Because similar patterns of deforesta-
tion occur throughout the Amazon basin, model-based ecological studies are critical
for assessing vegetation structure in the region. Ideally, these models should estimate
biophysical variables, and provide data that would be useful for policy makers.

Leaf Area Index

One such biophysical measure is leaf area index (LAI). LAI is one of the most
important variables in ecological canopy research (Running et al., 1986), and is
defined as the amount of leaf area per unit ground area (Wulder, 1998). LAl is an
important biophysical variable for vegetation modeling, and its variation is related to
canopy structure and spectral reflectance (Asner, 1998). Traditionally, measuring LAI
was highly destructive because trees had to be felled for accurate measurements.
Fortunately LAI can now be accurately measured with non-destructive instruments
such as an LAI2000, LAI-1éger (LAIL; Cournac et al., 2002), or Accupar ceptometer
(Jensen, 2000).

Leaf area index is related to atmospheric gas exchange that controls local carbon
cycling. Leaf retention of gases such as CO, in the canopy is directly related to the

amount of carbon released into the atmosphere (White et al., 1997). LAl is also a key
variable in analyzing energy absorption for photosynthesis (Cournac et al., 2002),
rates of photosynthesis, and for estimating primary and net primary production
(Jensen, 2000).

Given the importance of LAI and its relationship to other biophysical variables in
the rainforest environment, new and accurate means must be developed to remotely
estimate LAI. Satellite remote sensing data may provide a means of overcoming this
problem. Using in situ LAI values in conjunction with satellite data has been cited in
the literature as an accurate means of estimating LAI. In these types of studies, regres-
sion models function based on the assumption that reflectance characteristics are
related to the leaf area of the canopy. Several studies have used linear regression as an
effective model-developing technique for LAI and biomass (Ogawa et al., 1965;
Crow, 1978; Jensen, 2000; Jensen, 2002).

Artificial Neural Networks

A second technique used to model LAI is artificial neural networks (ANNSs).
ANNSs provide an adaptive learning environment that is capable of predicting output
variables based on input variables. Several studies have found that the use of ANNs
for modeling biophysical characteristics is more accurate than that of regression (Hil-
bert and Muyzenberg, 1999; Nelson et al., 2000; Jensen and Binford, 2004). Although
these studies yielded promising results, only one was performed in the Amazon basin,
where forest age was found to be important for biomass modeling (Nelson et al.,
2000).

The purpose of this study was to analyze satellite remote sensing data in conjunc-
tion with in situ LAI values collected in and around the city of Santarem in the central
Amazon basin. The objective was to compare ANNs and multiple regression to deter-
mine the most effective technique for remote LAI modeling.
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METHODOLOGY
Study Area

This research was conducted in and around Santarem, Para, Brazil (2°26' S and
54°41' W). The city and surrounding area are characterized by lush forests, nutrient
poor Fe, 03 soils, developed land, and abandoned land that was previously cropped.
Santarem is the third largest city in the Amazon region, and has average minimum
and maximum temperatures ranging from 30° C to 35° C (Ashton, 1958). The dry
season in Santarem stretches from July to December, with most rainfall in January
and May (Ashton, 1958).

The study area was approximately 180 x 60 km in size (Fig. 1). The area contains
many different land cover types such as initial, intermediate, and advanced secondary
succession. Moran et al. (1996) stated that the initial stage of succession is dominated
by herbaceous and woody species with small saplings contributing to most of the
biomass. The intermediate stage demonstrates a further increase in saplings, with a
reduction in grassy and herbaceous species, and the advanced stage is characteristic of
layering between canopy and large understory vegetation (Moran et al., 1996). Other
types of land cover include mature forests, cropped fields, cattle pastures, barren land,
and urban development. As evident by these different land cover types, the region is
extremely diverse. Mature forest is scant throughout the study area, and exists in large
patches only the Tapajos National Forsest (FLONA) located along the Tapajos River
in the western part of the study area. All of these cover types were sampled in this
study to make the models as representative of the Amazon landscape as possible.

Field Data Collection

In situ LAI values were collected throughout the study area. LAl measurements
were made using an Accupar ceptometer that measures photosynthetically active radi-
ation (PAR) both above and below the canopy to calculate LAI. The ceptometer
calculates LAI based on the gap-fraction principle:

IL/10 = ¢ KLAIL),

where IL/IO represents the percentage of light at the tree tops (canopy) reaching a
certain depth L, e is the base of natural logarithms, LAI(L) is the cumulative LAI
from the top of the canopy at location L, and k is a stand-specific constant (Aber and
Melillo, 1991).

The sampling scheme established 64 points (Table 1) characteristic of the follow-
ing cover types: mature forest, initial secondary succession, intermediate secondary
succession, advanced secondary succession, barren land, and urban area. Data collec-
tion was performed during June 2003 from 10 a.m. to 2 p.m. The LAI points were
divided into four classes based on their LAI values. Class 1 consisted of values from 0
to 3 and contained cover types such as barren area, urban land, pastures, cropped
fields, and mixes of water and vegetation. Class 2 had a range of values from 3.01 to
6, and contained initial and intermediate secondary succession. Class 3, with values
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Fig. 1. Near-infrared image of Santarem, Brazil. Source: NASA; acquired June 8, 2002.

of 6.01 to 9, contained advanced secondary succession and some mature forest, and
class 4 (with values greater than 9) contained only mature forest. There were 28
points measured for class 1, 12 for class 2, 18 for class 3, and 6 for class 4 (Table 1).
The Universal Transverse Mercator (UTM) location of each point was determined
using a Magellan 2000 global positioning system (GPS) unit. Sixteen understory PAR
readings were taken randomly within 20 X 20 m quadrats surrounding each GPS
point. These understory PAR readings were averaged and placed into the equation
above with the above-canopy PAR reading in order to calculate the overall LAI value
for each location.
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Table 1. Number of Points in Each Class

Class Range Number of points
1 0-3 28
2 3.01-6 12
3 6.01-9 18
4 >9 6

Table 2. ASTER Bands Used in the Study

Band number Name Spectral range, pm Spatial resolution, m
1 Green 0.52-0.60 15
2 Red 0.63-0.69 15
3 Near-infrared 0.76-0.86 15
4 Mid-infrared 1.60-1.70 30
5 Mid-infrared 2.145-2.185 30
6 Mid-infrared 2.185-2.225 30
7 Mid-infrared 2.235-2.285 30
8 Mid-infrared 2.295-2.365 30
9 Mid-infrared 2.360-2.430 30
Satellite Data

Multiple Regression. After the in situ LAI values were collected, multiple
regression was performed using bands from the ASTER sensor to establish their rela-
tionship with LAI. The bands chosen were from the visible, near-infrared, and mid-
infrared portions of the spectrum (Table 2). The sensor brightness values were used as
the independent variables while LAI represented the dependent variable. For each
regression, a separate predictive linear equation in the form of y = mx; + mx, ... + b
was calculated, where y = LAI, m is the slope obtained for each band, x was the
brightness value, and b was the y-intercept. To test the accuracy of each linear equa-
tion, the root mean square error (RMSE) was determined. RMSE has been discussed
by various authors including Curran et al. (1995) and Manly (1992), and is expressed
as follows:

RMSE = [1/N * £ (x, —x 0)*]*
where N = number of observations, x, is the predicted LAI value and x, is the

expected LAI value determined from the field measurements. This residual error was
used to determine the technique that provides the best modeling accuracy.
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Table 3. RMSEs Derived from Multiple Regression
with All Possible Points

LAI class Range RMSE
1 0-3 4.01
2 3.01-6 0.88
3 6.01-9 3.26
4 >9.01 4.21
Aggregate >0 3.36

Table 4. RMSEs Derived from Artificial Neural Network
Regression with All Possible Points

LAI Class Range RMSE
1 0-3 2.72
2 3.01-6 1.85
3 6.01-9 32

4 >9.01 2.55
Aggregate >0 2.62

Artificial Neural Networks. Following the completion of multiple regression
analysis, ANNs were trained to model LAI. While creating a back propagation
network, experimentation was performed with various parameters such as learning
rates, momentums, and neurons per network. The network’s rate of learning was an
important consideration because of the trade-offs between fast and slow rates. For
example, if a high learning rate was selected, the network would “learn” quickly.
However, this same network may quickly lose stability, and if different training data
were applied to the network, a different solution may result (Cunningham et al.,
2000). This was compensated for by adding a momentum term that allowed for faster
learning with less chance of stability loss (Haykin, 1994). As is common with neural
network studies (Hardin, 2000), optimum network configurations were determined
through brute force by calculating RMSEs for each individual network,. This allowed
for the most accurate network configuration for LAI estimation to be determined. The
results provided by these networks were used for accuracy comparisons with the
multiple regression results.

RESULTS AND DISCUSSION

In all cases, ANNs proved to be more accurate remote modellers of LAI than
multiple regression. For the models with all points included, the error derived by
multiple regression was 3.36 and from ANNs was 2.62 (Tables 3 and 4). It was
discovered early on that pasture LAI points needed to be removed from the models to
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Table 5. RMSEs Derived from Multiple Regression
with Pasture Points Removed

LAI class Range RMSE
1 0-3 3.6
2 3.01-6 0.94
3 6.01-9 2.53
4 >9.01 3.25
Aggregate >0 2.77

Table 6. RMSEs Derived from Artificial Neural Network
Regression with Pasture Points Removed

LAI class Range RMSE
1 0-3 2.14
2 3.01-6 0.59
3 6.01-9 2.3

4 >9.01 2.2
Aggregate >0 1.94

eliminate the problem of vegetation registering reflectance underneath the ceptome-
ter, resulting in inaccurate predictions. After removing the pasture points, the errors
were 2.77 from multiple regression and 1.94 for the ANN, respectively (Tables 5 and
6).

ASTER’s spectral resolution in the middle infrared (bands 4 through 9) probably
helped the ASTER models’ LAI estimating abilities. Mid-infrared may also have
proven valuable for vegetation modeling because the field data were collected during
the dry season. When leaves are less turgid, mid-infrared reflectance increases,
making it a good indicator of vegetation cover. Noting the performance of the mid-
infrared band is important in this analysis because other studies have proven its
usefulness for biomass modeling (Lu, 2001). This finding can now be further
extended to LAI estimation.

Network Configurations

Previous studies, such as Jensen (2002) and Jensen and Binford (2004), were
used to assess the best network configuration for modeling LAI These studies found
that a three-neuron multiplayer perceptron was the most accurate network for LAI
estimation in north central Florida, USA. This environment is much less complex
than the Amazon basin. Therefore it may be expected that different network configu-
rations are required to produce accurate LAI models in the Amazon.
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In this study, the best network configurations were found to contain either 6 or 7
neurons. When the data are highly complex, more neurons are required to process the
information. It is likely that more neurons were required to produce accurate LAI
models because of the heterogeneity of the Amazon landscape. A simpler three-
neuron network was found to be insufficient for this purpose. In addition, models
should not include too many neurons because this may cause over-fitting. Using too
great a number of neurons can result in rigidity in the LAI predictions, resulting in no
compensation for the error derived during LAI collection.

Other key components of network configurations are the learning and momentum
rates. This study found that a learning rate of 0.2 and a momentum of 0.2 were the
most accurate LAI estimators. The momentum rate of 0.2 was consistent with Jensen
(2002), who found a momentum of 0.25 to be the most accurate. However, a slower
learning rate of 0.2 was required, where Jensen (2002) was able to use a faster rate of
0.5. Again this may relate to the complexity of the Amazon landscape. A neural
network may need more time to learn the information in very heterogeneous environ-
ments. It appears that if allowed to learn the information slowly enough, ANNs can
produce accurate models even when environmental complexity is high.

Individual Class Accuracies

Past studies have demonstrated that different LAI classes model with differing
degrees of accuracy. For example Jensen (2002) and Weiss and Baret (1999) found an
inverse relationship between class accuracy and increasing LAI. In other words,
as the canopy increases in thickness, LAI becomes more difficult to model. This is
probably due to NIR saturation in the canopy. If NIR energy does not reach the lower
canopy layers, then NIR reflectance cannot be efficiently used for LAI estimation.

This study showed that, in most cases, class 4 (highest LAI class) modeled with
poor accuracy. However, in almost every case class 1 was the most inaccurate. This
result is in direct contradiction with Jensen (2002) and Weiss and Baret (1999),
although not beyond reasonable explanation. It would be attributable to the complex-
ity of the Amazon landscape. Class 1 had the greatest variety of cover types such as
barren land, cattle pasture, cropped fields, urban area, and mixes of water and vegeta-
tion. This heterogeneity of spectral signatures within this class played a key role in
reducing the models’ ability to predict LAIL

The results also showed that class 2 modeled with the highest accuracy in most
situations. This is also directly related to the nature of the Amazon landscape. As
classes become more homogeneous, their ability to be modeled accurately increases.
This class primarily consisted of secondary succession. Since all three levels of
succession are very similar in spectral response, the models were able to accurately
predict LAI values.

Another reason why the middle LAI classes modeled with the highest accuracy
may be based on the LAI values and spectral signatures gathered. For class 1, many of
the points were over-predicted because a recorded LAI of 0 was not characteristic of
the vegetation cover. If the ceptometer had been placed on the ground, LAI readings
higher than 0 may have been gathered, resulting in better LAI predictions. With
respect to class 4, canopy saturation may have played a role in making the spectral
signatures gathered inaccurate. For example, near-infrared reflectance was registering
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lower than it probably would have without saturation. Therefore, LAI values in this
class were typically under-predicted. In contrast, since class 2 points consisted of
thinner canopies, LAI measurements were probably collected with little near-infrared
saturation. The result was highly accurate LAI estimations for this class.

CONCLUSIONS

ANNSs proved more accurate modelers of LAI than multiple regression. This
result has been observed in many other research projects such as Jensen (2000, 2002)
in other ecosystems. The conclusion is that the superior predictive ability of neural
networks can now be extended to LAI estimations in the Amazon.

Conclusions can also be made with respect to individual class accuracies. Many
past studies such as Wulder (1998) and Jensen (2000) have found that the lower LAI
classes model with the highest degree of accuracy. This was not the case in the
Amazon basin. This research discovered that when the lowest LAI class contains
many different spectral signatures such as barren land, pasture, cropped fields, urban
development, and mix of vegetation and water, the predictive accuracy diminishes. In
addition, most of the class 1 points were measured with an LAI of 0, which is not
characteristic of vegetation that registered below the ceptometer. Thus, class 1 was
commonly over-predicted in the Amazon and the most difficult to model. The next
most difficult class to estimate contained the highest LAI values, class 4. The poor
modeling of this class was attributable to canopy saturation. Since near-infrared
reflectance cannot penetrate to the lower layers of the canopy, LAI is under-predicted
for most mature forest points. The classes that were estimated with the highest level
of accuracy were numbers 2 and 3 (middle LAI classes). This was because they did
not suffer from as much canopy saturation as class 4, or contain a large mixture of
spectral signatures such as class 1.

Future Studies. This study generated many questions that could be addressed in
future research. The models derived in this analysis need to be extended to other
Amazon regions to assess if the model could be transferred. In the future, more data
could be collected in alternate locations within the basin to compare LAI estimations
with those obtained in this study. It is likely that the models would not transfer to
other locations due to differences in climate, topography, species compositions, and
available cover types throughout the basin.

A future study could involve the incorporation of textural information into the
models. If variables such as species composition could be added, the LAI estimations
would be improved (Wulder, 1998). The difficulty with this procedure is the need to
locate an individual with sufficient understanding of Amazon vegetation to identify
trees at the species level. At this time, the identification of Amazon species has only
begun.

Future studies could also focus on employing other satellite sensors in the
Amazon basin for LAI modeling. Many more sensors with differing spectral and
spatial resolutions (such as ETM+, MODIS, and IKONOS) may also prove useful for
LAI estimations. For example, the following questions could be asked: Would similar
results be obtained with these sensors as with ASTER? Could one individual sensor
stand out above all the rest as the best LAI modeler in Amazon-related studies? It may
also be useful to apply thermal and microwave bands to the models, and the following
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could be asked: Would increasing the spectral resolution in these portions of the
electromagnetic spectrum result in better estimations? It is hoped that this study will
be a starting point in the quest to answer these questions.
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