
A Comparative Study of Terra ASTER, Landsat TM, and SPOT HRG data  
For Land Cover Classification in the Brazilian Amazon 

 
 

Dengsheng Lu*, Mateus Batistella§, Emilio F. Moran*, and Evaristo E. de Miranda§ 
 

*Center for the Study of Institutions, Population, and Environmental Change (CIPEC) 
Indiana University, Bloomington, Indiana, 47408, USA.  

dlu@indiana.edu, moran@indiana.edu 
 

§Brazilian Agricultural Research Corporation, Embrapa Satellite Monitoring  
Campinas, São Paulo, Brazil.  

mb@cnpm.embrapa.br, mir@cnpm.embrapa.br 
 
 

Abstract: Landsat Thematic Mapper (TM) data have been 
extensively used for land cover classification, but Terra ASTER 
and SPOT High Resolution Geometric (HRG) data applications 
are just beginning. This paper compares the capabilities of TM, 
ASTER, and HRG in land cover classification in the Amazon 
basin. Maximum likelihood classification was used for selected 
multi-sensor image classification. This research indicates that 
different sensor data have their own merits for land cover 
classification and no single sensor data or image processing 
routine provide the best classification accuracy for all land 
cover classes. The SPOT data fusion result with its 5 m spatial 
resolution provides the best overall classification accuracies, 
with Kappa coefficients of 61.8% and 56.3% for 13 land cover 
classes and 9 vegetation classes, respectively. This is about 3% 
higher than the second best classification results using SPOT 
multispectral data with 10 m spatial resolution and ASTER data; 
and about 4% higher than TM data for 9 vegetation classes. The 
major errors are due to the confusion between successional 
stages, agroforestry, and degraded pasture. For the six land 
cover classification system, the SPOT data fusion provides the 
best classification accuracy, with overall classification accuracy 
of 80.4% and kappa coefficient of 75.4%. This research 
indicates the importance of short-wave infrared bands in land 
cover classification. Also, higher spatial resolution images 
provide better classification accuracy when the spectral 
wavelengths are similar.  
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1. INTRODUCTION 
 
The Brazilian Amazon basin has experienced high deforestation 
rates since the 1970s (INPE, 2002). Deforestation has converted 
a vast area of primary forest into a mosaic of different stages of 
successional forests, agroforestry, crops, and pasture. It is 
estimated that about 20-50% of the deforested areas are in 
certain stage of secondary succession (Moran et al., 1994; Skole 
et al., 1994; Lucas et al., 2000; Roberts et al., 2002). The rapid 
regrowth and increasing areal extent of successional forests play 
an important role in regional and global carbon budget. Also, 
they have significant ecological functions within Amazonian 
ecosystems and landscapes, such as increasing soil fertility, 
changing vegetation structure and composition, and promoting 
faunal dispersion (Moran et al., 2000). Accurate classification 
of successional stages and distinction of successional forests 
from agroforestry and degraded pastures become considerably 
important in reducing the uncertainty in estimations of carbon 
emission and sequestration besides providing elements for the 
evaluation of land degradation or restoration. However, the 

complexity of vegetation stand structure, the smooth transition 
between adjacent successional stages, abundant tree species, 
and heterogeneous environmental conditions often create 
difficulties in Amazonian vegetation classification. Many 
previous initiatives only classified the moist tropical forest into 
two broad categories – successional forest and primary forest 
(Adams et al., 1995; Roberts et al., 1998; 2002, Powell et al., 
2004). However, biomass of different successional stages 
ranges from less than 2 kg/m2 in initial succession stages to 
more than 20 kg/m2 in advanced succession stages. Obviously, 
their roles in restoring degraded lands and in carbon 
sequestration vary significantly. Moreover, biomass of primary 
forests ranges from approximate 12 kg/m2 to greater than 50 
kg/m2 due to different soil conditions, topography, and nutrient 
availability (Lu et al., 2005). A single class of primary or 
secondary forest is obviously not sufficient for many 
applications such as carbon cycling study. So, a careful 
delineation of vegetation classes is required. 
Landsat TM/ETM+ data are often used for land cover 
classification (Adams et al., 1995; Roberts et al., 1998; Lu et al., 
2004). As higher spatial and/or spectral resolution satellite data 
are readily available, identification of suitable sensor data for 
land cover classification in the moist tropical regions is key for 
providing better classification results. For example, ASTER 
data with improved spatial and spectral resolutions and SPOT 
HRG data with high spatial resolution may provide better land 
cover classification performance than Landsat TM data. 
Although TM data have been extensively used for land cover 
classification in the Amazon basin, ASTER and HRG data 
applications are just beginning. Their capabilities for land cover, 
especially vegetation, classification are poorly understood. 
Hence, this paper aims to compare the performance of Terra 
ASTER, Landsat TM, and SPOT HRG data in land cover, 
especially vegetation classification and to explore the suitable 
image processing routine for vegetation classification in the 
Amazon.  
 
 

2. STUDY AREA 
 
The study area is located in northeastern Rondônia, Brazil. 
Settlements were implemented in the early-1980s in this 
location. Very limited deforestation occurred before 1988 as 
found on the 1988 TM image. However, deforestation has 
rapidly increased in the 1990s and has converted a vast area of 
primary forest into coffee plantation, pasture, and successional 
forests (Batistella et al., 2003). The majority of successional 
forests in this study area are less than 15 years old. Several soil 
types, mainly alfisols, oxisols, ultisols, and alluvial soils, were 
identified (Bognola and Soares, 1999). The terrain is 
undulating, ranging from 100 m to 450 m above sea level. The 



 

well-defined dry season lasts from June to August. The annual 
average precipitation is 2,016 mm, and the annual average 
temperature is 25.5º C (Rondônia, 1998).  
 
 

3. METHODS 
 
3.1 Field data collection and the land cover classification 
system 
A suitable classification system is critical for land cover 
classification using remotely sensed data and for field data 
collection. The selection of the land-cover classification scheme 
was motivated by three factors: (1) our previous experience in 
land-cover classification in the Amazon basin during the past 
decade, (2) the requirement of subclasses of secondary 
succession for Amazonian research, and (3) the requirement for 
discrimination of successional forests from pasture and 
agroforestry. Therefore, two land cover classification systems, 
with six classes for level I and 13 classes for level II were 
designed (Table 1). In this research, the emphasis was on 
vegetation classification. The primary forest was separated into 
upland dense forest, upland open forest, and lowland forest 
based on biomass and soil moist conditions. The successional 
forests were classified as initial (SS1), intermediate (SS2), and 
advanced (SS3) secondary succession based on vegetation stand 
structures. Pasture land was classified as cultivated and 
degraded pastures based on the pasture condition. Agricultural 
lands include agroforestry (such as coffee plantations and 
mixture of coffee and other tree species) and recently deforested 
areas. A detailed description about these vegetation classes, 
especially the different successional forest stages, is found in Lu 
et al. (2003). 

 
Table 1. Land-use and land-cover classification system 

 

 
Field data collection was conducted in August 2002 and 2003. 
During field work in August 2002, an IKONOS image was used 
to assist the selection of different successional forest stages, 
coffee plantation and other agroforestry, and degraded and 
cultivated pastures. In August 2003, a SPOT image was used to 
assist the selection of more land cover classes. After driving 
extensively throughout the settlements, field observations gave 
insights about the structure of regrowth stages, mainly regarding 
total height and ground cover of dominant species. The surveys 
were implemented in areas with relatively homogeneous 
ecological conditions (e.g., topography, distance from water, 
and land use) and uniform physiognomic characteristics. Every 
sample plot was registered with a global positioning system 
(GPS) to allow further integration with spatial data in 
geographic information systems (GIS) and image processing 
systems. The successional forest stages, agroforestry, and 

pastures are mainly located near the roads. The collection of 
sample plots for these classes is relatively easy and can be 
accurately located based on GPS points and IKONOS or SPOT 
images. However, the collection of primary forest data is often 
more difficult due to problems of access. Hence, most sample 
plots for the upland dense forest, upland open forest, lowland 
forest, and non-vegetated classes (e.g., road, urban, water, non-
vegetated wetland, and recently deforested areas) were 
identified based on visual interpretation of IKONOS or SPOT 
color composites. The collected sample plots were separated 
into two groups. One group was used for training sample plots 
in the supervised classification and another group was used as 
test sample plots for accuracy assessment. 
 
3.2 Image preprocessing 
Three different sensor data, i.e., Terra ASTER, Landsat 5 TM, 
and SPOT 5 HRG, were used in this research. The 30 m spatial 
resolution TM image with four visible and near infrared 
(VNIR), and two short-wave infrared (SWIR) bands was 
acquired on July 8, 2003, with sun elevation angle of 42.966 o 
and sun azimuth angle of 45.719 o. The SPOT HRG image with 
one 5 m resolution panchromatic band, three 10 m resolution 
VNIR bands, and one 20 m resolution SWIR band was acquired 
on June 26, 2003, with sun elevation angle of 51.065o and sun 
azimuth angle of 31.848o. The ASTER image with three 15 m 
resolution VNIR bands, six 30 m resolution SWIR bands, and 
five 90 m resolution thermal infrared (TIR) bands was acquired 
in August 1, 2003, with sun elevation angle of 52.666o and sun 
azimuth angle of 42.766o.  Thermal bands were not used in this 
research because of its coarse spatial resolution and thermal 
features. 
Geometric correction and atmospheric calibration are two 
important aspects in the image preprocessing. Although data 
products are geometrically corrected when they are purchased, 
the geometric precision is not high enough for high-resolution 
multi-sensor data analysis. Therefore, accurate rectification or 
registration based on control point data is often needed. The 
L1A SPOT data product was first checked with other ETM+ 
data, which were geometrically rectified already, and found to 
have high rectification accuracy. After checking the geometric 
accuracies of ASTER and TM data with the SPOT image, about 
two to four pixel errors were found, and thus accurate 
registration for these images was required. The SPOT image 
was used as the reference data. The TM and ASTER images 
were registered to the SPOT image with the Universal 
Transverse Mercator coordinate system. The nearest-neighbor 
algorithm was used to resample the registered images to suitable 
resolutions based on the selected sensor data. In the final results, 
the TM image was resampled to 30 m and the ASTER image to 
15 m spatial resolution. Errors of 0.1816 pixels (x error: 0.1409, 
y error: 0.1145) for the L1G TM image and of 0.3219 pixels (x 
error: 0.2116, y error: 0.2426) for the L1B ASTER image were 
obtained during image registration.  
The L1B ASTER data product was directly imported into 
radiance value and then rescaled to 8 bit integer format. No 
further atmospheric calibration was conducted for the ASTER 
data. The atmospheric calibration of TM and SPOT images was 
conducted using an improved DOS model (dark-object 
subtraction). This approach is an image-based procedure that 
corrects for the effects caused by sun zenith angle, solar 
radiance and atmospheric scattering (Chavez, 1996; Lu et al., 
2002).  

Rλ = PI * D*(Lλ – Lλ.haze)/( Esunλ * COS(θ)), 
Lλ = DNλ/Aλ  , for SPOT data, and   
Lλ = gainλ * DNλ + biasλ , for TM data, 

Where Lλ is the apparent at-satellite radiance for spectral band 
λ, DNλ is the digital number of selected band λ, Aλ is the 

Level I C I Level II C II 
Upland dense forest UDF 
Upland open forest UOF Primary 

forest PF 
Lowland forest LLF 
Advanced succession SS3 
Intermediate succession SS2 Secondary 

succession SS 
Initial succession SS1 
Degraded pasture DGP Pasture PA Cultivated pasture CUP 
Agroforestry AGF Agricultural 

land AL Bare soils (recently 
deforested area) 

BAS 
 

Built-up land BL Built-up land BUL 
Water WAT Water body WB Non-vegetated wetland NVW 



 

calibration factor for spectral band λ of SPOT image, Rλ is the 
calibrated reflectance, Lλ.haze is path radiance, Esun λ is exo-
atmospheric solar irradiance, D is the distance between the 
Earth and Sun, and θ is the sun zenith angle. The path radiance 
for each band was identified based on analysis of water bodies 
and shades in the images. The calibrated TM and SPOT images 
were also rescaled to 8 bit integer format. After geometric and 
atmospheric correction of the selected sensor images, 
correlation analysis was used to explore the relationships 
between bands and principal component analysis (PCA) was 
used to explore data redundancy.  
 
3.3 Supervised classification  
In order to explore land cover classification performance among 
the three sensor data, different image processing routines were 
designed (Table 2). These image processing routines explore 
how different spatial and spectral resolutions influence land 
cover, especially vegetation, in terms of classification 
accuracies, and compare how different sensor data with 
different spatial resolutions influence the vegetation 
classification accuracies. The spatial resolutions range from 5 m 
(SPOT data fusion result), 10 m (SPOT multispectral image), 15 
m (ASTER data), and 30 m (TM data). The spectral bands used 
range from 4 (SPOT data) to 7 (TM data), and to 9 (ASTER 
data). In order to make full use of high spatial resolution SPOT 
panchromatic image, the wavelet-merging technique was used 
to integrate SPOT multispectral bands and panchromatic band.   
 

Table 2. Summary of different image processing routines 
 

Sensor Treatments Code Res.  Bands 
VNIR data AST123 15 m 3 
VNIR and 
SWIR1 

AST1234 15 4 

VNIR and 
SWIR1, 2 

AST12345 15 5 ASTER 

VNIR and all 
SWIR bands 

AST-ALL 15 9 

TM all bands TM-ALL 30 6 
TM TM bands 2, 

3, 4, and 5  
TM2345 30 4 

SPOT bands 
1, 2, 3, and 4 

SPOT1234 10 4 

SPOT Data fusion  SPOT-
Fusion 

5 4 

Note: VNIR and SWIR represent visible and near infrared 
bands and shortwave infrared bands. Res. means spatial 
resolution of the sensor data. Data fusion is based on the SPOT 
multispectral bands and panchromatic band using the wavelet-
merging technique. 
 
 
The maximum likelihood classifier (MLC) was used to classify 
the spectral images for every processing routine. The training 
sample plots were selected based on field data collected in 2002 
and 2003. For the level II classification system, 12 – 20 samples 
plots were selected for each class. A polygon of 9 to 40 pixels 
for each plot was selected, depending on the homogeneity of the 
land cover type. After selection of training samples, spectral 
separability was analyzed, and then the refined training samples 
were used to implement supervised classification using the 
MLC. The same training sample plots were used to implement 
image classification for each image processing routine using the 
MLC. The LULC classification results based on the level II 

system were first conducted, then the level I results were 
generated through reclassification  according to the hierarchical 
scheme listed in Table 1. 
 
3.4 Accuracy assessment 
The error matrix is the most common approach for assessing 
land cover classification accuracy. Based on the error matrix, 
overall accuracy, producer’s accuracy, user’s accuracy, and 
Kappa coefficient can be calculated. Previous literature has 
provided the meanings and calculation methods for these 
parameters (Congalton et al., 1983; Congalton, 1991; Smits et 
al., 1999, Foody 2002); therefore, they are not discussed with 
details here. Because of the difficulty and time allocation in 
collecting training samples for land cover classes in moist 
tropical forest regions, the selection of a sufficient number of 
test sample plots based on randomly sampling is extremely 
difficulty. In this paper, a total of 365 sample plots were used 
for accuracy assessment, which were mainly collected during 
field work in 2002 and 2003, especially for different 
successional forest stage, agroforestry, degraded and cultivated 
pastures because they are difficult to visually discriminate on 
the images. Some land-cover classes, such as built-up land and 
dense forest, which can be easily identified on the images, were 
selected from the SPOT or IKONOS color composite. Accuracy 
assessments based on both classification systems were 
conducted. The producer’s accuracy and user’s accuracy for 
each class, as well as the overall accuracy and the kappa 
coefficient for each image processing routine were summarized 
to compare and analyze the performances of different spatial 
and/or spectral resolutions in land cover classification in the 
Amazon. 

 
 

4. RESULTS AND DISCUSSION 
 
4.1 Comparison of basic features among the three sensor 
data 
Table 3 summarizes the correlation analysis results for the three 
sensor data. There are some common features, such as (1) the 
NIR band has low correlation with all other bands, indicating its 
independence in information and its importance; (2) the 
correlations between visible bands or between SWIR bands are 
strong, indicating high data redundancy. For example, the 
ASTER NIR band is negatively correlated with all other bands 
with correlation coefficients ranging from -0.12 to -0.08; the 
TM NIR band is positively correlated with other bands with 
correlation coefficients ranging from 0.08 to 0.34; and the 
SPOT NIR band is also positively correlated with other bands 
with correlation coefficients ranging from 0.18 to 0.41. 
Conversely, the correlation coefficients between SWIR bands 
are very strong. The correlation coefficients between ASTER 
SWIR bands are greater than 0.97 and between TM SWIR 
bands is 0.96. The high correlation coefficients imply similar 
information representing land cover surface characteristics. The 
PCA results listed in Table 4 confirm the high data redundancy 
inherent in the multispectral images. In ASTER data, although 
the SWIR bands increase to six comparing to two in TM and 
only one in SPOT, the very high correlations between the SWIR 
bands indicate that the increased information may be limited. 
The majority of information, accounting for 99% of the overall 
variance, is concentrated on the first three PCs based on PCA 
result of ASTER data. In the TM data, the first four PCs account 
for 99% and in SPOT, the first three PCs account for 99.6%. 
This indicates that the data redundancy is relatively small in 
SPOT, but it is high in the ASTER image. 

 
 



 

Table 3. Correlation analysis results for the three sensor data 
 

Sensor Bands Blue Green Red NIR SWIR1 SWIR2 SWIR3 SWIR4 SWIR5 SWIR6 
Green 1.000 0.978 -0.090 0.909 0.917 0.916 0.918 0.916 0.901 
Red 0.978 1.000 -0.177 0.921 0.928 0.933 0.933 0.933 0.910 
NIR -0.090 -0.177 1.000 -0.083 -0.160 -0.167 -0.168 -0.183 -0.166 
SWIR1 0.909 0.921 -0.083 1.000 0.979 0.985 0.979 0.973 0.951 
SWIR2 0.917 0.928 -0.160 0.979 1.000 0.991 0.989 0.987 0.976 
SWIR3 0.916 0.933 -0.167 0.985 0.991 1.000 0.991 0.990 0.971 
SWIR4 0.918 0.933 -0.168 0.979 0.989 0.991 1.000 0.992 0.974 
SWIR5 0.916 0.933 -0.183 0.973 0.987 0.990 0.992 1.000 0.976 

ASTER 

SWIR6  0.901 0.910 -0.166 0.951 0.976 0.971 0.974 0.976 1.000 
Blue 1.000 0.893 0.895 0.159 0.841 0.852 
Green 0.893 1.000 0.947 0.235 0.896 0.890 
Red 0.895 0.947 1.000 0.088 0.899 0.930 
NIR 0.159 0.235 0.088 1.000 0.340 0.151 
SWIR1 0.841 0.896 0.899 0.340 1.000 0.961 

TM 

SWIR2 0.852 0.890 0.930 0.151 0.961 1.000  
Green 1.000 0.962 0.350 0.883 
Red 0.962 1.000 0.179 0.870 
NIR 0.350 0.179 1.000 0.410 

SPOT 

SWIR1  0.883 0.870 0.410 1.000  
 

Table 4. PCA analysis results among the three sensor data 
 

ASTER TM SPOT 
PC 

% Accu% % Accu% % Accu% 
PC1 87.27 87.27 80.84 80.84 71.70 71.70 
PC2 9.20 96.48 13.77 94.61 24.39 96.09 
PC3 2.53 99.00 3.16 97.77 3.54 99.63 
PC4 0.44 99.45 1.28 99.05 0.37 100.00 
PC5 0.23 99.67 0.55 99.59   
PC6 0.12 99.79 0.41 100.00   
PC7 0.09 99.88     
PC8 0.07 99.94     
PC9 0.06 100.00     

Note: PC means principal component; % indicates the 
percentage of variance in certain PC accounting for the overall 
variance; Accu% means the accumulated percentage. 
 
4.2 Comparison of classification results  
Table 5 summarizes the accuracy assessment results for the 
different processing routines based on 13 land cover classes. 
Different treatments have their own merits in separating land 
cover classes and no single treatment can provide the best 
classification accuracy for all classes. For example, the TM2345 
provides the best classification accuracy for UDF, DGP, CUP, 
and AGF; the SPOT data provide the best results for SS3 and 
SS1; and AST-ALL is better for UOF and LLF. Comparing the 
accuracies among the land cover classes, non-vegetated classes 
(i.e., bare soil, built-up land, water, and non-vegetated wetland) 
have higher classification accuracies than vegetation classes. 
Successional forest stages, especially SS2 and SS3, have poorer 
classification accuracies than any other vegetation classes. 
Overall, the SPOT-Fusion provides the best classification 
accuracy and kappa coefficient; the SPOT1234 and AST-ALL 
provide similar kappa coefficient for the 9 vegetation classes; 
and the AST123 provides the poorest accuracy, with a kappa 
coefficient of only 42.6% due to the lack of SWIR bands in this 
routine. The comparison between SPOT1234 and SPOT-Fusion 

routines indicates that increased spatial resolution through 
wavelet-merging techniques improved about 3% in the kappa 
coefficient. Most land cover classes, excluding SS2 and SS3, 
improved classification accuracies to a certain degree. 
Comparing TM2345 and TM-ALL, the TM2345 routine 
provides better classification accuracies for most land cover 
classes than TM-ALL, implying that addition of more spectral 
bands with high correlation coefficients between them may 
decrease the classification accuracy. Comparing the four 
routines based on ASTER data, AST123 provides the poorest 
classification results. The accuracy improves when adding more 
SWIR bands. This indicates the importance of SWIR bands in 
vegetation classification.  
Table 5 shows that most land cover classification accuracies 
based on ASTER data are poorer than those based on TM or 
SPOT. Different reasons may cause this problem. For example, 
the different image acquisition dates may produce difficulties 
for the comparison of classification results. The SPOT and TM 
images were acquired in late June and early July, the beginning 
of dry season, while the ASTER image was acquired in early 
August, the late period of the dry season. The different moist 
conditions may change land cover reflectance and the separation 
of land cover classes. Comparison between the images indicates 
that moist features (e.g. non-vegetated wetland) are more 
conspicuous in SPOT or TM images than in the ASTER image. 
The relatively drier condition in the ASTER data causes severe 
confusions among some land cover classes, such as between 
bare soils and cultivated pastures, between degraded pastures 
and SS1, and between agroforestry, degraded pasture, and 
different SS stages. Because of the different moist conditions, 
some sample plots for the non-vegetated wetland identified in 
TM or SPOT became bare soil in the ASTER image. A similar 
situation is for lowland forest that appeared in TM or SPOT 
image but became upland dense or open forest in the ASTER 
image. Also, the different training and test sample plots between 
TM (or SPOT) and ASTER make the comparison difficult 
because the ASTER image covers a smaller study area than TM 
and SPOT image, thus many training and test samples are out of 
the ASTER image. The decreased number of training sample 



 

plots and test sample plots may affect the classification results 
and accuracy assessment for the ASTER image.  
Table 5 indicates that the classification accuracies for SS2 and 
SS3 classes are especially poor compared with other land cover 
classes based on the selected three sensor data. For SS3, an 
important constraint is that no typical training or test sample 
plots were available because they are in a younger stage of SS3 

and they have similar vegetation stand structure as older SS2. 
Also, small SS3 areas in the study area limit the selection of 
sufficient number of training and test sample plots. The 
confusion of SS2 with agroforestry and SS3 makes the SS2 
classification poorer because the coffee plantation and mixtures 
of coffee and other trees have similar reflectance as SS2. 

 
Table 5. Comparison of classification accuracies among different processing routines based on level II classification scheme 

 

SPOT HRG Landsat TM Terra ASTER 

SPOT1234 SPOT-Fusion TM2345 TM-ALL AST-ALL AST123 AST1234 AST12345 Class 

PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% 

UDF 62.50 92.59 75.00 96.77 85.00 100.00 82.50 91.67 72.41 91.30 79.31 95.83 75.86 91.67 79.31 92.00
UOF 58.33 58.33 66.67 72.73 41.67 38.46 83.33 31.25 70.00 100.00 100.00 47.62 80.00 57.14 80.00 61.54
LLF 75.00 42.86 87.50 50.00 87.50 58.33 87.50 58.33 100.00 70.00 100.00 63.64 100.00 77.78 100.00 87.50
SS3 66.67 30.00 55.56 20.83 66.67 23.08 33.33 20.00 71.43 21.74 42.86 13.64 42.86 20.00 42.86 20.00
SS2 47.22 38.64 41.67 35.71 36.11 35.14 11.11 23.53 41.67 50.00 41.67 31.25 37.50 40.91 41.67 45.45
SS1 62.00 63.27 62.00 65.96 58.00 60.42 68.00 51.52 59.38 55.88 9.38 30.00 50.00 45.71 50.00 48.48
DGP 63.16 48.98 68.42 55.32 63.16 61.54 57.89 51.16 42.31 68.75 38.46 52.63 34.62 64.29 38.46 62.50
CUP 66.00 86.84 66.00 91.67 68.00 91.89 66.00 89.19 63.64 77.78 63.64 77.78 42.42 73.68 45.45 75.00
AGF 50.79 76.19 53.97 80.95 58.73 75.51 49.21 75.61 54.17 68.42 37.50 64.29 47.92 65.71 52.08 67.57
BAS 90.91 62.50 90.91 66.67 90.91 83.33 90.91 76.92 80.00 34.78 80.00 40.00 70.00 28.00 90.00 34.62
BUL 92.86 72.22 100.00 66.67 100.00 73.68 92.86 86.67 100.00 75.00 100.00 52.17 100.00 48.00 100.00 54.55
WAT 52.63 100.00 57.89 100.00 57.89 100.00 84.21 100.00 100.00 100.00 100.00 100.00 90.91 100.00 100.00 100.00

NVW 94.12 66.67 94.12 76.19 94.12 59.26 82.35 58.33 100.00 87.50 100.00 87.50 100.00 77.78 100.00 87.50

OCA 62.67 65.40 62.67 62.67 64.45 55.86 57.42 60.94 

KAP 58.69 61.76 58.64 58.65 60.70 51.73 53.09 56.89 

VOCA 59.15 61.76 58.17 57.84 58.80 48.61 51.39 54.17 

VKAP 53.20 56.25 52.11 51.69 53.19 42.62 45.28 48.16 
Note: OCA% and KAP% are overall classification accuracy and kappa coefficient for the 13 land cover classes; VOCA% and VKAP% are 
overall classification accuracy and kappa coefficient for the 9 vegetation classes, excluding the four non-vegetated classes; PA% and UA% 
are producer’s and user’s accuracy. 
 
Table 6 summarizes the accuracy assessment results based on 
six land cover classes. Overall, the SPOT data provide better 
classification accuracies than TM and ASTER data. Pasture and 
agroforestry classes have relatively poorer classification 
accuracies than other land cover classes. The SPOT-Fusion 
routine provides better classification accuracies for land cover 
classes than SPOT1234, implying that increasing spatial 
resolution but preserving the same spectral resolution improved 
the classification performance. Comparing TM2345 and TM-

ALL, spectral bands were added but keeping the same spatial 
resolution, which cannot significantly improve classification. In 
this case, the accuracies for some classes such as pasture and 
water slightly improved, but for other classes such as primary 
forest and successional forest they decreased. In the different 
routines based on ASTER data, AST123 provides the poorest 
classification accuracy, but an addition of SWIR bands 
improves classification accuracies, indicating the importance of 
SWIR bands in land cover classification.  

 
Table 6. Comparison of classification accuracies among different processing routines based on level I classification scheme 

 
SPOT HRG Landsat TM Terra ASTER 

SPOT1234 SPOT-Fusion TM2345 TM-ALL AST-ALL AST123 AST1234 AST12345 Class 

PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA%

PF 88.33 96.36 90.00 96.43 95.00 72.15 91.67 71.43 86.96 100.00 93.48 79.63 79.63 97.83 95.65 97.78
SS 86.32 73.87 88.42 73.68 71.58 68.00 70.53 65.05 92.06 72.50 76.19 72.73 72.73 90.48 90.48 77.03
PA 76.14 77.01 78.41 83.13 73.86 84.42 77.27 85.00 55.93 78.57 54.24 71.11 71.11 37.29 42.37 73.53
AL  58.11 74.14 59.46 78.57 58.11 78.18 55.41 77.36 65.52 64.41 56.90 67.35 67.35 63.79 65.52 61.29
BL 92.86 72.22 100.00 66.67 92.86 86.67 92.86 86.67 100.00 75.00 100.00 52.17 52.17 100.00 100.00 54.55

WB 86.11 91.18 83.33 93.75 86.11 75.61 91.67 84.62 100.00 94.74 100.00 94.74 94.74 100.00 100.00 94.74

OCA 78.75 80.38 75.48 75.48 77.73 72.66 74.61 75.78 

KAP 73.35 75.44 69.39 69.33 72.06 66.05 68.45 69.82 



Overall, this research indicates that increased spatial resolution 
such as SPOT data can improve land cover or vegetation 
classification accuracies. This is because increased spatial 
resolution can reduce mixture pixels. However, the increased 
spectral variation within the intra-class caused by high spatial 
resolution compensate for the benefits from the reduction of 
mixture pixels, resulting in decreased accuracy. This may imply 
that per-pixel based classification approach is not very suitable 
for high spatial resolution image classification. Texture or 
contextual based classification, or object-oriented classification 
approaches may be better suitable for SPOT image 
classification. 

 
 

5. CONCLUSION 
 
The findings listed above corroborate the difficulty in land 
cover classification, especially vegetation classification, when 
using optical sensor data for moist tropical areas. No sensor data 
or image processing routine can provide the best classification 
accuracy for all land cover classes. Overall, SPOT data fusion 
image with 5 m spatial resolution provide the best classification 
accuracy for 13 and 6 land cover classes or 9 vegetation classes. 
Increasing spatial resolution is useful for improving 
classification accuracy. Increasing highly correlated spectral 
bands cannot improve classification accuracy, but SWIR bands 
are important for such task. The classification for SS2 and SS3 
are especially difficult because of the confusion between 
successional stages and agroforestry.  
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