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Abstract

Estimation of forest stand parameters such as aboveground biomass in a large area using remotely sensed data has

considerable significance for sustainable management and utility of natural resources. In practice, selecting suitable image

data for such purposes remains difficult due to a poor understanding of forest stand parameters and remote-sensing spectral

response relationships, particularly in moist tropical regions. This paper explores relationships between forest stand parameters

and Landsat Thematic Mapper (TM) spectral responses through analyses of three study areas in the eastern Amazon basin

(Altamira, Bragantina, and Ponta de Pedras). Six TM bands and many vegetation indices are examined through integration of

spectral responses and field vegetation inventory data. Pearson’s correlation coefficients are used to interpret relationships

between forest stand parameters and TM data. This study concludes that single band TM5 and linear transformed indices such as

PC1 (the first component in a principal component analysis), KT1 (brightness of the tasseled cap transform), and albedo are most

strongly correlated with forest stand parameters, somewhat independent of biophysical environments. Many vegetation indices

that use TM4 and TM3 data, such as the atmospherically resistant vegetation index, the atmospheric and soil vegetation index,

and the normalized difference vegetation index, are weakly correlated with selected forest stand parameters. In contrast,

vegetation indices using band TM5 data improve correlations with selected forest stand parameters in Altamira forests that are

characterized by a complex stand structure. Forest stand structure and associated canopy shadow affect the forest stand

parameters and TM spectral response relationships. This paper provides a better understanding of relationships that have a

potential of being important for developing stand parameter estimation models and for improvement of vegetation classification

accuracy.
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1. Introduction

Forests are widely distributed on the Earth and are

important natural resources for human survival. Sus-

tainable management and utility of forest resources

require accurate information about their extent and
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spatial distribution. Forest stand parameters, such as

volume or biomass, average stand diameter and

height, are important data needed to assess forest

resources. Traditional inventory of forest stand para-

meters based on fieldwork is often difficult, costly, and

time-consuming to conduct in a large area, particularly

in moist tropical regions. Remote sensing may be the

only feasible way to acquire forest stand parameter

information at a reasonable cost, with acceptable

accuracy, and feasible effort because of its data advan-

tages which include repeated data collection, multi-

spectral and multitemporal images, synoptic view, fast

digital processing of large quantities of data, and

compatibility with geographic information systems

(GIS). Modern remote-sensing techniques, such as

multi-sensor data fusion, increased spatial and spectral

resolution, and integration of remote-sensing and GIS

make remotely sensed data the primary source for

many applications, such as land-use/land-cover clas-

sification, change detection, and estimation of forest

stand parameters.

Recently, much remote-sensing research has

focused on the extraction of forest stand parameters

through correlation or regression analysis to examine

relationships between spectral response and structural

factors of coniferous forest, including basal area,

biomass, crown closure, diameter at breast height

(DBH), tree height, vegetation density, and leaf area

index (LAI) using optical sensor data such as Landsat

Thematic Mapper (TM) images (Franklin, 1986; Hor-

ler and Ahern, 1986; Peterson et al., 1986, 1987;

Spanner et al., 1990; Stenback and Congalton,

1990; Lathrop and Pierce, 1991; Ardo, 1992; Curran

et al., 1992; Cohen et al., 1995; Gemmell, 1995;

Kimes et al., 1996; Trotter et al., 1997; Turner et al.,

1999; Eklundh et al., 2001; Franco-Lopez et al., 2001).

Similar forest parameter data have been acquired

through analysis of microwave radar images such as

synthetic aperture radar (SAR) (Israelsson et al., 1994;

Rauste and Hame, 1994; Harrell et al., 1995, 1997;

Fransson and Israelsson, 1999; Kurvonen et al., 1999;

Santoro et al., 2001; Castel et al., 2002; Sun et al.,

2002). Due to the important roles of moist tropical

forests in global warming, biodiversity, and ecosys-

tems, research using remotely sensed data to measure

selected properties of tropical forest stand parameters

has increasingly attracted interest during the past

decade (Cook et al., 1989; Sader et al., 1989; Wu,

1990; Lucas et al., 1993; Foody and Curran, 1994;

Nelson et al., 2000; Steininger, 2000; Lu, 2001;

Tetuko et al., 2001; De Wasseige and Defourny,

2002; Drake et al., 2002; Lu et al., 2002a; Santos

et al., 2002). Wulder (1998) summarizes many image

processing methods that may be useful for estimation

of forest structural parameters using remotely sensed

data.

Although much remote-sensing research has been

conducted during the past decades, conclusions about

relationships between forest stand parameters and

spectral responses vary, depending on the character-

istics of the study areas. Identifying the spectral

wavelengths or wavelength combinations that are

most suitable to use to acquire information about a

specific biophysical parameter in a given study area is

difficult. The influence of different characteristics of

study areas on these spectral-forest parameter relation-

ships is poorly understood. This is especially true in

moist tropical regions because of their complex forest

stand structure and abundant vegetation species. Most

previous research of this type was focused on the

boreal or temperate forest due to their relatively

simple stand structure and tree species. However,

relatively less attention has been devoted to the moist

tropical regions due to the difficulty in field data

collection and the complex biophysical environments.

A good understanding of forest stand parameters and

remote-sensing spectral relationships is a prerequisite

for effectively using appropriate image bands for

developing forest stand parameter estimation models

and for classifying vegetation classes. Hence, a com-

parative analysis of spectral responses and biophysical

parameters in different forest stand structures and

environmental conditions is needed to explore these

relationships and to explore the effects of different

characteristics of the study areas on them. For this

purpose, three study areas in Altamira, Bragantina,

and Ponta de Pedras in the eastern Amazon basin were

selected, and field vegetation inventory data were

collected. Six TM bands (excluding thermal band

TM6 due to low spatial resolution) and a variety of

vegetation indices were used in this research to iden-

tify the TM bands and vegetation indices that were

most strongly correlated with the selected forest stand

parameters in the Amazon basin, as well as to explore

the impacts of forest stand structures on TM response

and selected stand parameter relationships.
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2. Previous work

2.1. TM spectral signature and forest stand

parameter relationships

It is essential to establish correct relationships

between forest cover and image data to understand

how image data relate to forest stand characteristics

(Franklin, 1986; Wulf et al., 1990; Lathrop and Pierce,

1991). Previous studies have shown that visible bands

are strongly related to biomass (Franklin, 1986; Roy

and Ravan, 1996; Jakubauskas and Price, 1997) and

middle infrared bands have strongly negative relation-

ships with stand timber volume (Ahern et al., 1991;

Ripple et al., 1991; Ardo, 1992; Gemmell, 1995; Roy

and Ravan, 1996). Many studies have identified mid-

dle infrared wavelengths as being most sensitive to

change in forest wood volume, with reflectance in this

region being directly related to the extent of canopy

closure (Butera, 1986; Horler and Ahern, 1986). Stei-

ninger (2000) found a significant relationship between

middle infrared reflectance and secondary forest

aboveground biomass in Manaus, Brazil, but such

significant relationships were not observed in Santa

Cruz de la Sierra, Bolivia. A possible reason for these

results in both study areas is the effects of a low sun

angle during the satellite measurement in Bolivia and

regrowth structural and general compositional differ-

ences between the two study areas. Eklundh et al.

(2001) also found that middle infrared wavelengths, in

particular, band 7 in ETMþ, were significant related to

LAI in a boreal conifer forest.

The correlation of forest stand parameters with near

infrared wavelength reflectance may be positive

(Spanner et al., 1990), negative (Ripple et al., 1991;

Danson and Curran, 1993), or flat (Franklin, 1986;

Peterson et al., 1987) because of increased canopy

shadowing with larger stands and decreased unders-

tory brightness (soil brightness) due to increased

density with biomass increase (Horler and Ahern,

1986; Spanner et al., 1990; Roy and Ravan, 1996;

Treitz and Howarth, 1999). Shadowing probably plays

an important part in the response of all bands to change

in wood volume (Ardo, 1992) and it is thought to be at

least as important as canopy water content in deter-

mining the middle infrared responses (Horler and

Ahern, 1986). TM data may provide information on

stand density but not on species composition (Horler

and Ahern, 1986). Franklin (1986) found that sample

plots grouped by species structure had a much better

statistical relationship between forest attributes and

TM reflectance data than by using species or structure

alone.

2.2. Vegetation index and forest stand parameter

relationships

A variety of vegetation indices have been devel-

oped, with the most popular ones using red and near

infrared wavelengths to emphasize the difference

between the strong absorption of red electromagnetic

radiation and the strong scatter of near infrared radia-

tion. The normalized difference vegetation index

(NDVI) is one of the most often used in many applica-

tions relevant to analysis of biophysical parameters.

However, conclusions about its value vary, depending

on the use of specific biophysical parameters and the

characteristics of the study area. For example, Chen

(1996) evaluated a number of spectral indices for

boreal forests and concluded that NDVI was best

correlated with LAI. Gong et al. (1995) found that

NDVI and LAI were positively correlated with con-

iferous forest. However, other studies found a weak

correlation between LAI and NDVI (Nemani et al.,

1993; Franklin et al., 1997; Eklundh et al., 2001). A

significant statistical relationship between vegetation

indices and green biomass was found (Hardisky et al.,

1984), but other studies also reported little or no

association between them (Anderson and Hanson,

1992; Anderson et al., 1993). Hall et al. (1995) found

that NDVI was not a reliable predictor of biophysical

parameters for the dominant coniferous species of the

boreal forest because NDVI was linear in the sunlit

canopy fraction (R2 ¼ 0:96) and the sunlit canopy

fraction was not strongly correlated with biomass

density. Sader et al. (1989) found that NDVI differ-

ences were not detectable for successional vegetations

older than approximately 15–20 years and biomass

differences in young successional tropical forests were

not detectable using NDVI. The NDVI did not appear

to be a good predictor of stand structure variables

(height, diameter of main stem) or total biomass in

uneven age and mixed broadleaf forests. Roy and

Ravan (1996) discovered that the TM greenness,

NDVI, and TM band 4 were related to canopy pig-

mentation and growth condition, and, thereby, sensi-
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tive to phenological changes. NDVI and TM band 4

were not significantly correlated with biomass. How-

ever, Tucker et al. (1983) found that the integrated

vegetation index could be related directly to vegeta-

tion amount (aboveground biomass) and primary pro-

ductivity. It is possible to use remote-sensing canopy

reflectance models for estimating foliage, woody bio-

mass, and productive potential (Franklin and Hier-

naux, 1991). Huete et al. (1997) indicated that NDVI

spectrally saturated over forested areas and was sen-

sitive to canopy background reflectance change. Boyd

et al. (1996) found weak correlations between NDVI

and biophysical properties in tropical forests; how-

ever, those vegetation indices derived from middle or

thermal infrared wavelengths were correlated strongly

with the regeneration stage of tropical forests.

McDonald et al. (1998) found that vegetation

indices were significantly affected by exogenous

effects, including solar zenith angle, background

reflectance, stand structure, and LAI. The global

environmental monitoring index (GEMI) performed

best when vegetation cover was sparse, where a

decrease in the value of GEMI corresponded to an

increase in crown cover (McDonald et al., 1998). The

perpendicular vegetation index (PVI), soil adjusted

vegetation index (SAVI), transformed SAVI (TSAVI),

and GEMI partially reduced background reflectance

effects in the data. SAVI and TSAVI perform best

when vegetation cover was dense since these indices

have large dynamic ranges and small susceptibility to

atmospheric perturbations (McDonald et al., 1998).

Eastwood et al. (1997) found that MSAVI (modified

SAVI) and GEMI were the best indices to use for salt

marsh vegetation monitoring. The sensitivity of some

vegetation indices to variations in canopy conditions

was evaluated by Vygodskaya et al. (1989) and more

than 40 indices were reviewed by Bannari et al.

(1995). Treitz and Howarth (1999) summarized a

variety of ratio-based indices for biophysical studies

and factors affecting spectral response of forest cano-

pies. Vegetation indices were sensitive to internal

(such as canopy geometry, terrain factors, species

composition) and external factors (sun elevation

angle, zenith view angle, atmospheric conditions) that

affected vegetation reflectance (Treitz and Howarth,

1999).

Spectral brightness showed a strong correlation

with biomass values (Franklin, 1986; Roy and Ravan,

1996). The brightness and greenness from tasseled cap

transform of TM image were highly sensitive to

topographic variation, but they also captured much

of the spectral variability associated with major

changes in cover types. The wetness component from

a tasseled cap transform of TM images was an impor-

tant spectral variable for distinguishing among classes

of closed-canopy coniferous forests (Cohen et al.,

1995) and it displayed high correlation with stand

attributes (Cohen and Spies, 1992). The standard

deviation of tree size, mean size and density of trees

in the upper canopy layers, the structural complexity

index, and stand age can be most reliably estimated by

analyzing satellite data (Cohen and Spies, 1992).

3. Characteristics of the study areas

Three study areas in the eastern Brazilian Amazon

basin – Altamira, Bragantina, and Ponta de Pedras

(hereafter, Pedras) – were selected for this research

(Fig. 1). They have different soil conditions, land-use

histories, landscape complexities, vegetation stand

structures, and human activities, representing typical

study areas in the Amazon basin (Table 1).

The Altamira study area is located along the Trans-

Amazon Highway in the Brazilian state of Pará with a

combination of flat and rugged terrain. The elevation

ranges from 50 to 300 m. The city of Altamira and the

Xingu River anchor the eastern edge of the study area.

In the 1950s, an effort was made to attract colonists

from northeast Brazil, who came and settled along

streams as far as 20 km from the city center. With the

construction of the TransAmazon Highway in the

1970s, the population and older Caboclo settlers from

earlier rubber eras claimed land along the new high-

way and legalized their land claims (Moran, 1981).

Early settlement was driven by geopolitical goals and

political economic policies whose aim was to transfer

production of staples like rice, corn and beans from the

most southern Brazilian states to more northerly

regions. The dominant native types of vegetation in

this area are mature moist forest and liana forest. The

main tree species are Cecropia palmate, Cecropia

obtuse, Inga alba, and Banara guianensis. Most of

the successional vegetations are between 8 and 17

years and the average biomass growth rate in Altamira

is about 1.3 kg/m2/year. Different stages of succes-
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sional vegetations are common along the TransAma-

zon highway and its fish bone pattern feeder roads.

Nutrient-rich alfisols, as well as nutrient-poor ultisols

and oxisols are present in this study area. Annual

rainfall in Altamira is approximately 2000 mm which

is concentrated from late October through early June.

The average annual temperature is approximately

26 8C.

The Bragantina study area is also located within the

state of Pará and it has a flat topography interspersed

by river channels that seasonally flood. The vegetation

in this region is mostly composed of pasture and

cropland, secondary growth forest, flooded forest,

and a few remaining areas of dense mature forest.

The main tree species are Vismia guianensis, Croton

matourensis, Maximiliana maripa, Guatteria peop-

Fig. 1. Locations of three study areas and Thematic Mapper images illustrating the characteristics of the landscapes.
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pigiana, and Tapirira guianensis. At the beginning of

twentieth century, almost one million hectares of

dense tropical rain forest covered the Bragantina

region; however, less than two percent of these forests

remained by 1960. The dense forest that once sur-

rounded the town of Castanhal had an average height

of 23 m. Heavy occupation of this region has elimi-

nated almost all dense forests and transformed the

landscape into a mosaic comprised of a variety of

succession vegetations (Tucker et al., 1998). Cur-

rently, successional vegetations, most often between

10 and 25 years, dominate the landscape. The average

biomass growth rate of successional vegetations in

Bragantina is 0.59 kg/m2/year. This area is dominated

by nutrient-poor soils (i.e., oxisols and ultisols).

Annual rainfall ranges from 2200 to 2800 mm with

a September to June concentration. The average

annual temperature is 25–26 8C.

The Pedras study area is located in the estuarine

region of the Amazon on Marajo Island in the muni-

cipality of Ponta de Pedras in the state of Pará. It is a

topographically flat transitional region between two

macro-environments with dense floodplain forests to

the west and the more prominent natural savanna

grasslands to the east. The vegetation has a complex

structure and is rich in palms. The forest presents

uniform stratification consisting of large trees with an

emergent canopy reaching 35 m and a sparse herbac-

eous layer. Disturbed areas, whether floodplain or

upland forest quickly become secondary forests with

diverse stages of regrowth. Savannas mainly consist of

trees 2–5 m in height that are widely spread across a

mantle of grasses such as Aristida and Eragrostis. A

transitional forest is located in the ecotone between

forest and savanna and is characterized by lianas and

palms such as Desmoncus orthocantus and Mauritia

martiana. In this study area the main tree species are

C. matourensis, Maimiliana maripa, B. crispa, and

Piriquiteira. Most of successional vegetations are less

than 15 years. The average biomass growth rate of

successional vegetations in Pedras is approximately

0.91 kg/m2/year. Floodplain alluvial soils and upland

oxisols are dominant in this study area. The annual

average temperature is approximately 27 8C, and rain-

fall is about 3000 mm per year with the wet season

stretching from December to the beginning of May.

Table 1

Comparison of selected biophysical and land use characteristics in three study areas

Altamira Bragantina Pedras

Soil types Dominated by nutrient-rich

alfisols. Some nutrient-poor

ultisols and oxisols are also

found

Mosaic of nutrient-poor

soils: oxisols and ultisols

Transitional environment with

upland nutrient-poor oxisols

and floodplain alluvial soils

Landscape characteristics Extensive deforestation occurred

in the past 30 years. Various

stages of successional

vegetations are distributed

along the TransAmazon

highway and feeder roads

Dominated by various

successional stages; some

mature forests are distributed

along the rivers

Dominated by dense upland

forest, floodplain forest, and

natural grassland

Main tree species C. palmate, C. obtuse, I. alba,

B. guianensis

V. guianensis, C. matourensis,

M. maripa, T. guianensis

C. matourensis, M. maripa,

B. crispa, Piriquiteira

Average vegetation age Most successional vegetations

are between 8 and 17 years

Most successional vegetations

are between 10 and 25 years,

with some over 40 years

Most successional vegetations

less than 15 years

Vegetation stand structure Complex Relatively simple Complex

Average biomass growth rate About 1.27 kg/m2/year for

successional vegetations

About 0.59 kg/m2/year for

successional vegetations

About 0.91 kg/m2/year for

successional vegetations

Climate conditions Rainfall: 2000 mm 2200–2800 mm 3000 mm

Rainy season: October–June December–August December–early May

Average Ann. temperature 26 8C 25–26 8C 27 8C
Topographic variability Mixture of flat and rugged

terrains. The elevation ranges

from 50 to 300 m

Flat Flat
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Land use varies among the three study areas, but in

most cases they are variations of swidden agriculture,

agroforestry, and pasture management. Altamira has

experienced high rates of deforestation and succession

associated with implementation of agropastural pro-

jects. The Pedras sites at Marajo Island has been

historically occupied by Caboclo populations, mainly

devoted to agroforestry activities in the floodplain and

swidden agriculture in the uplands, although pasture

and mechanized agriculture can be found in the upland

oxisols. Land use in the Bragantina region has experi-

enced several phases, and currently short-fallow swid-

den cultivation and pasture development dominate.

Cultivation of secondary growth areas has been com-

mon for decades, and islands of mature forest are rare

(Moran et al., 2002). The long settlement history, high

human population density, and repeated land clearing

(including burning), over the past century in Bragan-

tina has degraded the landscape, leading to slower

vegetation regrowth rate.

4. Methods

4.1. Field data collection and analysis

A nested sampling strategy, organized by region,

site, plot, and subplot, was employed to inventory

vegetation data (Fig. 2). The region represents the

study area that included all sample sites. The site in

this region was selected for plot sampling. Sites were

selected to represent a particular age class and land use

history. The first step for sampling was to visit the

study area to assess its level of homogeneity. The size

of sites varied according to the land use activity

previously in place, ranging from a minimum of

two hectares (e.g., swidden agriculture area) to several

hundred hectares (mature forest). The field survey

sites were determined based on a stratified random

strategy using TM classification images. Once a site

was selected and demarcated for sampling, plots were

randomly located along one or more transects and

Region Site 

Sites were randomly allocated along the sides of roads. Ten 10 x 15 m plots were 

randomly located within a forest stand site. Inside the plot, a 5 x 2 m subplot was 

randomly placed.  

Terminology: 

Tree:  DBH >=10 cm

Sapling: DBH 2 - 10 cm

Seedling: DBH < 2 cm

Region: the study area. 

Site: study sampling 

location. 

Plot: delimited area 

within the sample site, 

used to measure trees. 

Subplot: smaller plot 

within the plot used to 

measure saplings and 

count the number of 

seedlings. 

DBH: diameter of a tree 

trunk at breast height, 

usually 1.3 meters off 

the ground. 

Stem Height: the height 

to the first major 

branch. 

Inventory Items inside the 

Plot: 

All trees were identified 

and measured for DBH, 

stem height, and total 

height. 

Inventory Items 

inside Subplot: 

All saplings were 

identified and 

measured for DBH 

and total height. 

All seedlings were 

identified and 

counted. 

If the individuals 

were uncountable, 

percent coverage 

was estimated. 

Subplot Plot 

Fig. 2. Design of field data collection.
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subplots were located randomly inside the plots. The

distance between plots varied, depending on the size,

shape, and location of the site (e.g., previous land use

activities and presence of micro-topographic environ-

ments). In general, 10 plots (10 m � 15 m for each

plot) in each site were allocated and one randomly

selected subplot (5 m � 2 m for each subplot) was

nested within each plot. Plots were designed to inven-

tory trees, and subplots were used to inventory sap-

lings, seedlings, and herbaceous species. In each plot,

all individual trees with a diameter at breast height

greater than 10 cm were identified and measured for

DBH, stem height (the height of the first major

branch), and total height. In the subplot, all saplings

(DBH between 2 and 10 cm), seedlings (DBH less

than 2 cm), and herbaceous vegetation (percent of

ground cover) were identified and counted. The dia-

meter and total height were recorded for all indivi-

duals with DBH between 2 and 10 cm.

Fieldwork was conducted during the dry season in

1992 and 1993 in Altamira and Pedras, and in 1994

and 1995 in Bragantina. During the fieldwork, Landsat

TM color composites were used to allocate the sam-

ples sites and GPS devices were used to identify the

coordinates of each site. Table 2 provides a summary

of collected data in these three study areas and Table 3

provides statistics of the selected forest stand para-

meters (average stand diameter and height, basal area,

and aboveground biomass) based on the site level.

An Oracle database was developed to store and

manage the vegetation inventory data. The Amazon-

database-information system software was developed

using visual basic language to analyze the vegetation

stand parameters. In this research, Eq. (1) (Nelson

et al., 1999) was used to calculate biomass for those

trees and saplings with DBHs of less than 25 cm, and

Eq. (2) (Overman et al., 1994) was used to calculate

biomass for those trees with DBHs greater than or

equal to 25 cm. Four forest stand parameters were

calculated using Eqs. (3)–(6) at the site level:

lnðDW1Þ ¼ �2:5202 þ 2:1400 lnðDÞ þ 0:4644 lnðHÞ
(1)

Table 2

Summary of data collected from three study areas

Altamira Bragantina Pedras

Quantity of

Sites 20a 18 14

Plotsb 131 126 81

Subplots 239 215 187

Trees 1572 989 1527

Saplings 744 1085 1060

Seedlings 9593 13461 7129

Field data

collection date

1992, 1993 1994, 1995 1992, 1993

Acquisition date

of TM images

20 July 1991 21 June 1994 22 July 1991

a Four sites had coordinate errors. Only 16 sites were used in

this research.
b Some sites of young successional vegetation do not have plots

because of no trees with DBH greater than 10 cm.

Table 3

Summary statistics for field sample data in the three study areas

Study area Variables Sites Minimum Maximum Mean S.D.

Altamira AGB 20 0.828 51.675 13.636 12.783

BA 20 1.285 80.406 23.568 19.378

ASD 20 2.298 29.990 14.800 9.559

ASH 20 2.458 20.265 10.164 5.504

Bragantina AGB 18 1.697 30.825 9.503 8.598

BA 18 0.261 51.061 18.143 13.922

ASD 18 2.039 25.474 13.647 7.791

ASH 18 2.400 18.936 9.916 4.776

Pedras AGB 14 2.408 39.467 12.048 10.548

BA 14 5.247 49.525 21.794 12.224

ASD 14 2.634 39.266 16.749 11.474

ASH 14 2.470 20.089 10.320 6.477

AGB, aboveground biomass; BA, basal area; ASD, average stand diameter; ASH, average stand height.
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lnðDW2Þ ¼ �3:843 þ 1:035 lnðD2HÞ (2)

Average stand diameter (ASD, cm):

ASD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPs
i¼1DS2

� �
PA=SPA þ

Pmþn
j¼1 DT2

h i

s þ m þ n

vuut
(3)

Average stand height (ASH, m):

ASH ¼
Ps

i¼1HS
� �

PA=SPA þ
Pmþn

j¼1 HT
h i

s þ m þ n
(4)

Basal area (BA, m2/ha):

BA ¼
Ps

i¼1BAS

SPA
þ
Pmþn

j¼1 BAT

PA
(5)

Aboveground biomass (AGB, kg/m2):

AGB ¼
Pm

i¼1DW1i þ
Pn

j¼1DW2j

PA

þ
Ps

k¼1DW1k

SPA
(6)

In these equations, ln is the natural logarithm, D the

diameter at breast height (cm), and H the total tree

height (m). DS, HS, and BAS are sapling DBH, height,

and basal area, respectively. DT, HT, and BAT are tree

DBH, height, and basal area, respectively. DW1 is

individual tree or sapling biomass (kg) when DBH is

less than 25 cm, DW2 is the individual tree biomass

when DBH is greater than or equal to 25 cm, m the

total tree number in a plot when DBH is between 10

and 25 cm, n the total tree number in a plot when DBH

is greater than or equal to 25 cm, and s the total sapling

number in a subplot area when DBH is between 2 and

10 cm. PA and SPA are the total plot area and subplot

area (m2) within the selected site, respectively.

4.2. Image preprocessing and development of

vegetation indices

Geometrical rectification and radiometric and

atmospheric correction of remotely sensed data are

often required for many applications (Lu et al.,

2002b). The importance of accurate geometric recti-

fication is obvious because the image data are often

related to ground truth data or used for further ana-

lysis through combination of different sources of data.

In this research, TM images were acquired in July

1991 for Altamira and Pedras and June 1994 for

Bragantina. These images were geometrically recti-

fied into UTM projection using control points taken

from topographic maps at 1:100,000 scale. A nearest-

neighbor resampling technique was used and a root

mean square error of less than 0.5 pixel was obtained

for each TM image.

A variety of methods have been used for atmo-

spheric normalization or correction (Markham and

Barker, 1987; Gilabert et al., 1994; Chavez, 1996;

Stefan and Itten, 1997; Vermote et al., 1997; Song

et al., 2001). Different models have their own char-

acteristics and requirements for the input parameters.

Which method is suitable for a specific project

depends on the objective of the study and atmo-

spheric data available. For many historical remote-

sensing data, atmospheric data at the time of image

acquisition are not available. In this situation,

advanced calibration methods such as 6S are difficult

to use for atmospheric correction. However, image-

based calibration methods, such as an improved

image-based dark object subtraction (DOS) model,

are very suitable to use for atmospheric correction of

historical image data (Lu et al., 2002b). In this

research, all TM images collected have very good

quality and are devoid of clouds over the study areas.

The terrains in these study areas are predominantly

flat, hence, atmospheric effects can be regarded as

uniform. An improved image-based DOS model was

used in this study. The gain and offset, and sun

elevation angle were obtained from the TM image

header file. The path radiance was identified based on

clear water as the standard for each band. The atmo-

spheric transmittance values for visible and near

infrared bands were derived from Chavez (1996),

which were an average for each spectral band derived

from the radiative transfer code. For middle infrared

bands, the atmospheric transmittance was set to one.

Surface reflectance values after calibration fall

within the range between 0 and 1, but for conveni-

ence of data analysis, these values were rescaled to a

range between 0 and 100 by multiplying each pixel

by 100.

After geometric rectification and atmospheric cali-

bration, a variety of vegetation indices were calculated

separately for each study area. These vegetation

indices, grouped into four categories for a convenience

of analysis, are summarized in Table 4. These included
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(1) simple ratios: TM4/3, TM5/3, TM5/4, and TM5/7;

(2) normalized ratios: NDVI, ND54, ND53, ND57,

and ND32; (3) complex vegetation indices: atmo-

spherically resistant vegetation index (ARVI), atmo-

spheric and soil vegetation index (ASVI), SAVI,

MSAVI, and GEMI; and (4) linear transform of multi-

ple bands: VIS123, MID57, albedo, tasseled cap (KT)

transform, and unstandardized principal component

analysis (PCA).

4.3. Integration of field data and TM spectral

responses

All the sample data have accurate coordinates

derived from GPS devices and were located on geo-

metrically rectified TM color composites during the

fieldwork. These sample data can be linked to TM

individual bands or the vegetation indices derived

from TM image to extract the spectral responses for

Table 4

Image variables used in research

Vegetation indices Formula

Simple ratio

TM4/3 TM4/TM3

TM5/3 TM5/TM3

TM5/4 TM5/TM4

TM5/7 TM5/TM7

Normalized vegetation indices

NDVI (TM4 � TM3)/(TM4 þ TM3)

ND53 (TM5 � TM3)/(TM5 þ TM3)

ND54 (TM5 � TM4)/(TM5 þ TM4)

ND57 (TM5 � TM7)/(TM5 þ TM7)

ND32 (TM3 � TM2)/(TM3 þ TM2)

Complex vegetation indices

ARVI (NIR � 2 RED þ BLUE)/(NIR þ 2 RED � BLUE)

ASVI ðð2 NIR þ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2NIR þ 1Þ2 � 8ðNIR � 2 RED þ BLUEÞ

q
Þ=2

SAVI ððNIR � REDÞ=ðNIR þ RED þ LÞÞð1 þ LÞ
MSAVI ðð2 NIR þ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 NIR þ 1Þ2 � 8ðNIR � 2 REDÞ

q
Þ=2

GEMI xð1 � 0:25xÞ � ððRED � 0:125Þ=ð1 � REDÞÞ,
where x ¼ ð2ðNIR2 � RED2Þ þ 1:5 NIR þ 0:5 REDÞ=ðNIR þ RED þ 0:5ÞÞ

Image transform

VIS123 TM1 þ TM2 þ TM3

MID57 TM5 þ TM7

Albedo TM1 þ TM2 þ TM3 þ TM4 þ TM5 þ TM7

KT1 0.304TM1 þ 0.279TM2 þ 0.474TM3 þ 0.559TM4 þ 0.508TM5 þ 0.186TM7

KT2 �0.285TM1 � 0.244TM2 � 0.544TM3 þ 0.704TM4 þ 0.084TM5 � 0.180TM7

KT3 0.151TM1 þ 0.197TM2 þ 0.328TM3 þ 0.341TM4 � 0.711TM5 � 0.457TM7

PC1-A 0.054TM1 þ 0.130TM2 þ 0.143TM3 þ 0.595TM4 þ 0.709TM5 þ 0.321TM7

PC2-A �0.079TM1 � 0.121TM2 � 0.212TM3 þ 0.787TM4 � 0.421TM5 � 0.372TM7

PC3-A 0.230TM1 þ 0.504TM2 þ 0.616TM3 þ 0.140TM4 � 0.472TM5 þ 0.266TM7

PC1-P 0.056TM1 þ 0.079TM2 þ 0.127TM3 � 0.845TM4 � 0.490TM5 � 0.143TM7

PC2-P �0.052TM1 � 0.060TM2 � 0.162TM3 þ 0.472TM4 � 0.745TM5 � 0.436TM7

PC3-P 0.327TM1 þ 0.617TM2 þ 0.663TM3 þ 0.233TM4 � 0.116TM5 � 0.079TM7

PC1-B 0.140TM1 þ 0.242TM2 þ 0.313TM3 þ 0.262TM4 þ 0.739TM5 þ 0.457TM7

PC2-B �0.062TM1 � 0.026TM2 � 0.170TM3 þ 0.952TM4 � 0.108TM5 � 0.222TM7

PC3-B 0.276TM1 þ 0.502TM2 þ 0.674TM3 þ 0.069TM4 � 0.439TM5 � 0.140TM7

ND, normalized difference; ARVI, atmospherically resistant vegetation index; ASVI, atmospheric and soil vegetation index; SAVI, soil

adjusted vegetation index; MSAVI, modified SAVI; GEMI, global environmental monitoring index; VIS, visible wavelengths (TM1, TM2,

TM3), MID, middle infrared wavelengths (TM5, TM7); PC, principle component analysis; KT, tasseled cap transform.
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each sample site. The selected forest stand parameters

were aggregated from 10 plots and 10 subplots to

represent forest stand features within each site. A

window size of 3 by 3 was used to extract the mean

value of spectral responses for each site. Stand para-

meters, such as ASD, ASH, and AGB, from each site

were associated with spectral responses using a Pear-

son’s correlation coefficient analysis to explore the

forest stand parameter and TM spectral response

relationships. The coefficient measures the strength

of linear relationships between two variables. One

variable is a forest stand parameter, such as ASD,

ASH, or AGB; and another variable is the spectral

response from a single TM band or a vegetation index.

4.4. Impacts of forest stand structures on

relationships between forest stand parameters and

spectral responses

Tree species composition, forest stand structures

and associated canopy shadows, and vegetation vigor,

are regarded as important factors affecting vegetation

reflectance (Lu, 2001). Reflectance among the sites

with similar biomass amounts often varies and com-

parison of different stand structures may be an effec-

tive way to explore how the different forest stand

characteristics affect vegetation reflectance. Graphs

illustrating the reflectance change with wavelengths

were used to analyze biomass growth impacts on

vegetation reflectance. The tree height distributions

were compared for those sites with similar biomass

amounts in the three study areas. Because Altamira

and Bragantina represent two extremes in forest stand

structures, the analysis in this paper is mainly focused

on these two study areas.

5. Results and discussion

5.1. Relationships between forest stand parameters

and TM reflectance

Selected forest stand parameters have negative

correlations with TM reflectance and such relation-

ships vary depending on the characteristics of the

study areas. Table 5 summarizes the correlation coef-

ficients between the selected forest stand parameters

and TM spectral signatures in the three study areas.

In Altamira, middle infrared wavelengths were the

bands most significantly (negatively) correlated with

Table 5

Correlation coefficients between selected forest stand parameters and TM bands

Regions Band AGB BA ASD ASH

Altamira (16 sites) TM1 �0.524a �0.352 �0.577a �0.736b

TM2 �0.509 �0.432 �0.670b �0.828b

TM3 �0.501 �0.415 �0.683b �0.813b

TM4 �0.538a �0.509 �0.618a �0.655a

TM5 �0.627a �0.576a �0.794b �0.851b

TM7 �0.606a �0.595a �0.806b �0.839b

Bragantina (18 sites) TM1 �0.597a �0.637b �0.698b �0.708b

TM2 �0.741b �0.781b �0.861b �0.876b

TM3 �0.618b �0.662b �0.757b �0.758b

TM4 �0.837b �0.794b �0.814b �0.833b

TM5 �0.810b �0.802b �0.832b �0.861b

TM7 �0.668b �0.685b �0.745b �0.771b

Pedras (14 sites) TM1 �0.629a �0.598a �0.635a �0.714b

TM2 �0.685b �0.658a �0.675a �0.766b

TM3 �0.625a �0.598a �0.628a �0.709b

TM4 �0.756b �0.762b �0.750b �0.786b

TM5 �0.826b �0.781b �0.832b �0.922b

TM7 �0.786b �0.789b �0.801b �0.879b

a Correlation is significant at the 0.05 level.
b Correlation is significant at the 0.01 level.
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AGB and BA and they also had strong negative

correlations with ASD and ASH. The visible wave-

lengths were not significantly correlated with AGB

and BA; however, they are strongly correlated with

ASD and ASH. The near infrared wavelength

appeared to have a relatively weak correlation with

selected stand parameters compared with middle

infrared wavelengths. In Bragantina, TM4, TM5,

and TM2 were the best bands that most strongly

correlated with all selected forest stand parameters.

TM1, TM3, and TM7 exhibited statistical signifi-

cance, but had relatively weak, correlations with forest

stand parameters compared with TM4, TM5, and TM2

correlations. In Pedras, all selected forest stand para-

meters were significantly correlated with TM bands.

Middle infrared and near infrared wavelengths were

the best image bands most strongly (negatively) cor-

related with AGB, BA, ASD, and ASH. The visible

bands were also significantly correlated, but they had

relatively weak relationships to the stand parameters

compared with near and middle infrared bands.

In all three study areas, ASD and ASH had higher

correlations with TM bands than did AGB and BA,

implying that there is a different capability of TM

spectral signatures for forest stand parameter estima-

tion. Considering all non-thermal TM bands, TM5 and

TM7 are the most strongly correlated with ASD and

ASH, somewhat independent of the characteristics of

the study areas. In particular, bands TM5 and TM7 are

the best bands to use in Altamira and Pedras with their

more complex forest stand structures. In Bragantina,

with a relatively simple stand structure, bands TM2

and TM4 were also strongly correlated with ASD and

ASH, implying that TM2 and TM4 may be more

sensitive to the forest stand structures. Band TM5

in Pedras or TM4 in Bragantina is suitable for AGB

or BA estimation, but TM spectral signatures may be

not suitable for AGB and BA estimation in Altamira.

The forest stand parameters have higher correla-

tions with TM bands in Bragantina and Pedras than in

Altamira, indicating the impacts of different charac-

teristics of the study areas on the forest stand para-

meter and TM reflectance relationships. The complex

stand structure in Altamira may be an important factor

reducing relationships between TM spectral signa-

tures and AGB and BA because AGB and BA are

comprehensive parameters that are related to forest

stand density, vegetation age, and species composi-

tion, in addition to the DBH and height. The optical

sensors mainly capture canopy information and the

ASD and ASH are more strongly correlated with the

canopy. This results in better relationships of TM

spectral signatures with ASD and ASH than with

AGB and BA in different study areas.

5.2. Relationships between forest stand parameters

and vegetation indices

Not all vegetation indices are significantly related to

forest stand parameters. Also vegetation indices are

not definitely better related to forest stand parameters

than TM spectral signatures. Table 6 summarizes the

correlation coefficients between forest stand para-

meters and vegetation indices in the three study areas.

The simple ratio image, TM5/4, was significantly

correlated with AGB and BA and strongly correlated

with ASD and ASH in Altamira. In Bragantina all the

selected simple ratio-based indices, except TM5/4,

were significantly correlated with selected forest stand

parameters, but in Pedras, only TM5/7 was significant.

The normalized vegetation index, ND54, was signifi-

cantly correlated with AGB and BA and strongly

correlated with ASD and ASH in Altamira. In Brag-

antina ND32 is significantly correlated with AGB and

BA and all vegetation indices used in this study are

significantly correlated with ASD and ASH. In Pedras,

only ND57 is significantly correlated with selected

stand parameters. In the category of complex vegeta-

tion indices, no vegetation indices, except GEMI, are

strongly correlated with stand parameters used in this

study. However, in Bragantina, these vegetation

indices are significantly correlated with ASD and

ASH. In contrast to simple ratios, normalized or

complex vegetation indices, the linearly transformed

images, i.e., MID57, albedo, KT1, KT3, and PC1, are

significantly correlated with AGB and BA and

strongly correlated with ASD and ASH in Altamira.

In Pedras and Bragantina, MID57, albedo, KT1, and

PC1 are strongly correlated with the forest stand

parameters selected. PC3 in Pedras and PC2 in Brag-

antina are also strongly correlated with the stand

parameters selected. Overall, the vegetation indices

from linearly transformed images provided higher

correlation coefficients than other categories of vege-

tation indices (simple ratios, normalized indices, and

complex indices) in the three study areas. In Altamira
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and Pedras, the vegetation indices that included TM4

and TM3 in their formulas, such as ARVI, ASVI,

MSAVI, SAVI, NDVI, and TM4/3, have weak statis-

tical relationships with forest stand parameters, espe-

cially AGB and BA. However, vegetation indices

including TM5, such as ND54, ND53, ND57, TM5/

3, TM5/4, and TM5/7, have better correlations with

forest stand parameters. In contrast, this conclusion is

not true in Bragantina.

The ASD and ASH had higher correlations with

vegetation indices than AGB and BA in all three study

areas, suggesting that different vegetation indices have

different potentials for estimation of relevant forest

stand parameters. In general, the correlation coeffi-

cients in Bragantina and Pedras are higher than in

Altamira. This implies that different biophysical

environments influence relationships between vegeta-

tion indices and selected stand parameters. Three

categories of vegetation indices can be roughly

grouped according to statistical relationships between

vegetation indices and forest stand parameters in these

three study areas: (1) vegetation indices that have

stable and strong correlations with forest stand para-

meters with some independence of biophysical envir-

onments; such vegetation indices include KT1, PC1,

MID57, and albedo; (2) vegetation indices that have

strong correlations with forest stand parameters in a

study area like Altamira that have complex stand

structures (e.g. ND54, TM5/4, and KT3); and (3)

vegetation indices that have weak statistical relation-

ships with forest stand parameters and are not appro-

priate for research involving these parameters (such

vegetation indices include most complex vegetation

indices (e.g., ASVI, ARVI), NDVI, and the simple

ratios that include TM3 band (e.g., TM5/3, TM4/3)).

A combinative analysis of the loadings from PCA or

Tasseled cap transforms and the correlation between

TM spectral signatures and forest stand parameters

Table 6

Correlation coefficients between vegetation indices and selected forest stand parameters in the study areas

VI Altamira Bragantina Pedras

AGB BA ASD ASH AGB BA ASD ASH AGB BA ASD ASH

TM4/3 0.124 0.008 0.260 0.411 0.505a 0.530a 0.607a 0.661a 0.243 0.199 0.276 0.354

TM5/3 �0.474 �0.487 �0.519a �0.441 0.511a 0.528a 0.628a 0.677a �0.060 �0.053 �0.048 �0.028

TM5/4 �0.624a �0.526a �0.817b �0.881b �0.404 �0.464 �0.499 �0.526a �0.445 �0.364 �0.456 �0.554a

TM5/7 0.466 0.524a 0.660a 0.625a 0.476 0.518a 0.586a 0.620a 0.591a 0.675a 0.638a 0.686a

NDVI 0.157 0.035 0.308 0.458 0.459 0.521a 0.625a 0.633a 0.247 0.205 0.259 0.337

ND53 �0.485 �0.499 �0.534a �0.470 0.447 0.500 0.627a 0.632a �0.033 �0.018 �0.018 0.001

ND54 �0.635a �0.540a �0.833b �0.908b �0.420 �0.470 �0.488 �0.519a �0.436 �0.354 �0.450 �0.550a

ND57 0.486 0.545a 0.687a 0.652a 0.459 0.497 0.572a 0.601a 0.589a 0.675a 0.625a 0.671a

ND32 0.200 0.110 0.321 0.284 �0.628a �0.615a �0.561a �0.612a �0.002 �0.003 0.081 0.060

ARVI 0.194 0.113 0.394 0.523a 0.530a 0.578a 0.686a 0.699a 0.166 0.127 0.177 0.246

ASVI 0.192 0.119 0.401 0.529a 0.493 0.553a 0.662a 0.669a 0.156 0.121 0.166 0.234

SAVI 0.123 0.008 0.271 0.420 0.434 0.500 0.605a 0.611a 0.224 0.181 0.235 0.311

MSAVI 0.157 0.037 0.307 0.456 0.435 0.503 0.608a 0.613a 0.239 0.195 0.245 0.321

GEMI 0.482 0.464 0.535a 0.553a 0.787b 0.740b 0.747b 0.767b 0.666a 0.684a 0.662a 0.676a

VIS123 �0.529a �0.427 �0.684a �0.837b �0.681a �0.723b �0.807b �0.816b �0.657a �0.628a �0.655a �0.740b

MID57 �0.624a �0.583a �0.801b �0.851b �0.773b �0.773b �0.813b �0.841b �0.822b �0.790b �0.830b �0.918b

Albedo �0.609a �0.560a �0.755b �0.819b �0.818b �0.813b �0.859b �0.881b �0.816b �0.798b �0.816b �0.890b

KT1 �0.600a �0.553a �0.734b �0.795b �0.835b �0.821b �0.862b �0.883b �0.819b �0.803b �0.818b �0.886b

KT2 �0.488 �0.475 �0.538a �0.547a �0.762b �0.688a �0.672a �0.693a �0.644a �0.661a �0.635a �0.644a

KT3 0.619a 0.584a 0.849b 0.880b 0.333 0.361 0.368 0.407 0.218 0.159 0.242 0.314

PC1 �0.603a �0.562a �0.741b �0.790b �0.815b �0.809b �0.851b �0.876b 0.815b 0.811b 0.816b 0.867b

PC2 �0.126 �0.132 �0.001 0.024 �0.797b �0.741b �0.751b �0.766b 0.438 0.369 0.459 0.558a

PC3 0.300 0.311 0.355 0.246 �0.058 �0.177 �0.335 �0.276 �0.742b �0.729b �0.735b �0.806b

a Correlation is significant at the 0.05 level.
b Correlation is significant at the 0.01 level.
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can explain why the vegetation indices using linear

transform have better correlations than other ratio-

based vegetation indices. For example, bands TM5

and TM4 have larger loadings in KT1 and PC1

components and higher vegetation reflectance. This

means that KT1 and PC1 components receive more

information from TM4 and TM5, indicating that those

vegetation indices derived more information from

near and middle infrared wavelengths, which have

higher correlations with forest stand parameters. The

KT2 and PC2 components have higher loadings of

TM4, indicating that more information is derived from

the TM4 band, and strong correlations with forest

stand parameters in Bragantina exist because rela-

tively simple stand structures lead to TM4 having

the best relationships with these parameters. However,

KT2 and PC2 components have weak correlations in

Altamira and Pedras because of their complex stand

structures. The KT3 band receives more information

from middle infrared wavelengths, which encourages

good correlations with forest stand parameters in

Altamira but weak correlations in Pedras and Brag-

antina. The PC3 band derives more information from

visible bands (TM2 and TM3), thus PC3 has weak

correlations with forest stand parameters in Altamira.

However, Pedras and Bragantina have strong PC3

correlations with forest parameters due to different

vegetation structures, land-use histories, and canopy

homogeneities.

5.3. Impacts of forest stand structures on

vegetation reflectance

Table 7 compares tree height distribution among

those successional vegetation sites with middle-level

biomass amounts in the two study areas. Forest sites

with similar biomass amounts can have different tree

height distribution, for instance, between Altamira

sites A006 and A011 (about 13 kg/m2) and A014

and A007 (about 10 kg/m2). Forest sites with different

biomass amounts can have similar tree height distri-

bution, such as between A006 and A007 in Altamira.

The complex tree height distribution strongly contri-

butes to poor correlations between AGB or BA and

spectral responses in Altamira. In contrast, Bragantina

has a consistent trend that tree height distribution

Table 7

Comparison of tree height distribution among Altamira (A) and Brangantina (B) sites

Site

A006 A011 A014 A007 A013 B001 B006 B002 B020 B024

Biom. 13.6 13.1 10.3 10.0 8.3 7.1 8.9 10.4 10.4 13.3

Age 8 10 7 8 10 14 19 20 35 25

H < 5 3 2 4 1 2 2 2 4

6 2 9 7 8 2 3 1

7 3 11 10 3 7 4 3 2

8 3 12 14 8 8 22 1 5 1

9 13 21 13 6 25 23 4 14 4 1

10 6 22 12 6 11 10 12 16 13 6

11 5 23 16 5 12 8 12 22 5 3

12 11 13 13 9 5 12 17 12 12

13 13 6 10 8 8 1 10 3 16 6

14 16 4 8 8 4 2 4 14 7

15 15 6 3 13 5 3 8 14 9

16 9 2 2 7 4 2 17 17

17 3 1 1 1 3 6

18 4 5 2 1 1 7

19 1 2 2 4

20 4 2

21 1 2

22 1 1

23 1

Biom., aboveground biomass (kg/m2); age, years; H, tree height (m).
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becomes more complex as biomass increases. Hence,

the TM spectral signatures can effectively show forest

stand structure difference, leading to a high correlation

with biomass. Comparison of the sites between Alta-

mira and Bragantina indicates that the ranges of tree

height distribution in Altamira are often larger than in

Bragantina. In particular, some emergents with large

tree DBH and tall tree height have very serious

impacts on the reflectance because of their canopy

shadows. This problem is more serious in Altamira

than in Bragantina, as indicated in Table 7. This

implies that the forest stand structure in Altamira is

more complex than in Bragnatina which is the main

reason why relationships between AGB or BA and TM

spectral responses are much weaker in Altamira than

in Bragantina. The impacts of forest stand structure

can be explained more clearly using graphs of vegeta-

tion reflectance.

Figs. 3 and 4 illustrate the reflectance change due to

different forest stand structures and vegetation growth.

In Altamira, the trend that reflectance decreases as

vegetation biomass increases is not obvious (Fig. 3),

but in Bragantina this trend is very consistent (Fig. 4).

Combinative analysis of Fig. 3 and Table 7 indicated

that reflectance is closely related to tree height dis-

tribution, i.e., it is complex forest stand structures,

rather than biomass differences, that decreased reflec-

tance in Altamira. For example, sites A006 and A011

have similar biomass amount (13.6 versus 13.1 kg/

m2), but the stand structure in A006 is more complex

than in A011. Thus, the vegetation reflectance in A006

is lower than in A011. This is especially obvious in the

near infrared wavelength (TM4). A similar situation

occurs between sites A014 and A007 (10.3 versus

10.0 kg/m2). The stand structure in A007 is much

more complex than in A014. Thus, the reflectance
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Fig. 3. Reflectance curves among different sites in Altamira

illustrating impacts of forest stand structures. Note: site no.
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of A007 is much lower than A014. In contrast, A006

and A007 have different biomass amounts (13.6 ver-

sus 10.0 kg/m2), but have similar stand structure (both

have emergents), hence, their reflectance values are

very similar. In Bragantina, forest stand structure

become more complex as biomass increases

(Table 7), thus the reflectance decreases (Fig. 4).

Analysis of Figs. 3 and 4 and Table 7 indicates that

the change of vegetation reflectance is directly related

to forest stand structure, instead of biomass. When

biomass growth has a consistent trend with stand

structure change, as illustrated by Bragantina, the

correlation between biomass and TM spectral

responses is high. In contrast, when biomass increase

is inconsistent with forest stand structure change, as in

Altamira, the correlation between AGB and TM

responses is poor. However, average stand height or

DBH is directly related to the forest stand structure,

thus TM spectral signatures have good correlations

with these parameters in different study areas. This

suggests that TM spectral responses are more suitable

for ASD or ASH than for AGB or BA research,

particularly in those study areas with complex stand

structures like those found in Altamira.

Landsat TM data primarily captures canopy infor-

mation instead of individual tree information due to its

limited spatial resolution. The complex stand structure

can also result in TM reflectance saturation because of

the relatively low radiometric resolution (8 bit in TM

data). This situation is especially obvious in Altamira

between advanced successional and mature forests

because they have similar stand structures even if

their biomass amounts vary significantly. A similar

conclusion was made by Steininger (2000) who found

that the canopy reflectance saturated when biomass

reached about 15 kg/m2 or forest succession vegeta-

tion ages exceeded 15 years. This problem makes

biomass estimation difficult for the advanced succes-

sional and mature forests in those sites with complex

stand structures.

6. Conclusion

Bands TM5, PC1, KT1, albedo, and MID57 are the

best spectral data forms that are strongly correlated

with forest stand parameters, which are somewhat

independent of different biophysical environments.

These data forms are appropriate to use for research

involving forest stand parameters in different study

areas. The complex forest stand structures and asso-

ciated canopy shadows weakened relationships

between TM spectral responses and forest stand para-

meters. Different stand structures affect the conclu-

sions about the relationships between TM spectral

responses and biophysical parameters. These results

can be used to guide the selection of suitable TM

band(s) and vegetation indexes for estimating relevant

biophysical parameters in moist tropical forest

regions. In addition, the relationships identified pro-

vide insights into developing new complex data trans-

formation equations that have a potential to enhance

accurate classification of forest parameters. Newly

derived equations will likely be valuable in imple-

menting selected research at regional or global scales

using TM or moderate resolution imaging spectro-

radiometer (MODIS) data.
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