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1 INTRODUCTION

Santa Fe Institute

Studies in the Sciences of Complexity Individuals who influence decisions regarding the use of land, operate within a

complex environment comprised of interacting elements that include both nat-
ural systems and human institutions. Individually, the elements of the natural
and human systems that influence land-use decisions may be very complex.
Within natural systems, dynamic processes, such as the hydrological cycle,
and the distribution of biophysical resources, such as soil fertility, influence
land-use decision making. Elements of an individual’s institutional environ-
ment can also influence the options and incentives that are available to an
individual, and thus the land-use decisions that they make. Understanding
the nature of these complex processes and interactions is a nontrivial task.
However, agent-based simulation offers researchers a tool to better understand
the nature of these complex systems.

The recent development of computer simulation technologies by social sci-
entists has provided a tool for not only predicting social phenomena, but also
for better understanding the nature of these human systems. Replicative valid-
ity is not the goal of many social simulation efforts. Instead, researchers have
focused on developing relatively simple simulations as tools for understanding
the properties of social systems and the way in which interactions between
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actors at the local level results in the emergence of behaviors or phenome
at the global level [8]. In this role, simulation.becomes a tool for evaluating
assumptions and exercising theorles of action [1]. ~
Many of the techniques applied to social simulation can be traced back

to earlier developments in the physical or natural sciences. For example, com-
puter simulation has a relatively long history in the natural sciences in appli
cations related to fisheries, forest environments, and watersheds. But recent
advances in computer hardware and software technologies have made these
technologies accessible to social scientists. Recently, we have seen simulatioti
efforts that have included models of not only the natural system in question;
but also the human system with which it interacts. In fields such as anthropol-
ogy [6, 13, 14] and resource management [3, 5, 27], human systems simulations
are being developed which directly address the actions of human individuals
or groups as they interact with a natural system.
This approach to simulation is pursued in this chapter. A model of in-
dividual human decision making at the household level is linked through a
geographical space to a model of ecosystem behavior. The goal of this mod-
eling exercise is to explore the potential of a spatially referenced agent-based
model, for understanding how behavior at the local level interacts with natu-
ral processes to produce observable phenomena, at a higher level. We explore
this goal with an application that focuses on the land-use decisions made by
individual households within a region of the Amazon rainforest near Altamira,
Brazil. The simulation described in this chapter is the product of a pilot effort
between the University of Waterloo and Indiana University designed to explore
Proposed theories of land-use change in this region. Although still preliminary
in its scope, this simulation illustrates the potential of such a spatially ref-
erenced agent-based approach for better understanding the complex human
and natural processes that interact within this region.
The next section of this chapter discusses the history of land use in the
Altamira region and outlines the importance of understanding land-use pro-
cesses at the farm level. Subsequent sections describe the structure of the
land-use change inthe Amazon (LUCITA) simulation system, and the initial
findings that have emerged from an analysis of the model’s behavior. A final
discussion addresses the strengths and weaknesses of this simulation in the
context of land-use change and social simulation research.

2 LAND-USE CHANGE IN THE BRAZILIAN AMAZON

The Brazilian Amazon has been experiencing marked changes in the past 30
years [10, 23, 28]. From an area that in 1975 had less than 1 percent of its
forest cover removed, the Basin is already 15 percent deforested. Deforestation
has proceeded from east to west, along roads and along an “arc of deforesta-
tion” 'along the southern periphery. In these areas, rates of deforestation have
been in excess of one percent per year in the past two decades with its peak in
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1995 [12]. This massive change in land cover is a result of national decisions to
integrate the region into national economic development, by means of a two
pronged approach that combined massive road building with colonization and
resettlement projects [22, 26]. Attractive subsidies and tax incentives, land ti-
tle, and access to extension services made moving to the Amazon economically
profitable for both large and small landholders.

Before this most recent set of events, the history of land use in the Brazil-
ian Amazon had been characterized by economic development along river
banks, which limited occupation to a small portion of the Basin. In the colo-
nial period this took the form of searching for spices, slaves, and some valuable
wood species. Under Jesuit tutelage, some of the missions successfully devel-
oped cocoa plantations, cattle ranches, and other surplus production, but they
collapsed in the eighteenth century following the expulsion of the Jesuits from
Brazil. In the national period, the Amazon experienced massive population
dislocations to exploit natural rubber (1880-1920), but in which great wealth
was achieved by a few at the cost of the many. A shorter-lived rubber boom
took place during World War II when the Malaysian rubber plantations’ sup-
plies to the Allies were cut off and Brazilian natural rubber was desperately
needed. Following these booms, the Amazonian towns stagnated economically,
lost population, and persisted by barter and subsistence production.

All this began to change after World War II as nationalist leaders began
to see the vast Amazon frontier, accounting for 58 percent of the Brazilian
territory, as an important component of achieving world power status. The
March to the West began to be seen as a valuable geopolitical objective.
With the assumption of power by the military in 1964, implementation of
these objectives began to take place very quickly. The Transamazon Highway,
running east-west across the Basin, was a particularly important component
of this geopolitical plan, and it was backed up with a coordinated plan of
incentives to attract both small and large interests to the region.

The showcase for the colonization part of the project was the Altamira
Integrated Development Project that began in 1971. From a town of about
1,000 people in 1970, the town grew to over 10,000 in one year [22], and it
has continued to grow steadily since then to over 85,000 in the 1990s. Of all
the colonization projects along the Transamazon Highway, Altamira was the
only one blessed with above-average quality soils, less stagnant water due to a
rolling terrain, and therefore less malaria. Communities of 48 homes were built
every 10 km to facilitate community life, while still maintaining reasonable
distances to the properties. The project was laid out systematically into 100-
hectare properties in a rasterized fashion. The layout has come to be called
“fishbone pattern” because land was allocated along the main trunk of the
highway, as well as along side roads spaced symmetrically every 5 km. Small
landholders from throughout Brazil came to the area to claim their properties
with over 6,000 families coming in the first decade to the Altamira region.
Brazil being a very large country with very different climates and cultural
traditions, the immigrants brought with them varied approaches to land use
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that require that attention be paid to household behavior, rather than assume
that they all behave in ethnically equivalent terms.

Farmers from northeast Brazil, accounted for about 30 percent of ini-
tial settlers. They came from 2 land characterized by cyclical droughts, and
irrigated agriculture in very small plots along river banks. These proved to
be among the most and least educated of the settlers, with a combination of
previous landowners of small, irrigated plots and sharecroppers on large prop-
erties and plantations. They differed among themselves as much or more than
they differed as a group from those of other regions of Brazil. Farmers from
the Amazon region accounted for another 30 percent, and they were mostly
descendants of rubber tappers, swidden cultivators living along river banks
who moved to the roadside properties to get a legal title to land. They were
familiar with the local forest species and, with effective ways to recognize good
soils, preferred cultivation of manioc and cowpeas as foolproof crops for the
area. Another 25 percent came from southern Brazil, and while the govern-
ment hoped that they would be prime examples of modern agriculture, many
of them turned out to be coffee plantation sharecroppers who had left the
northeast seeking their fortune in southern Brazil in the previous generation.
The remaining group, from the Central-West region, was mostly familiar with
cattle ranching at small scale and was seeking to expand their holdings.

From this mix of immigrants the Altamira project started and, over the
past 30 years, there has been significant turnover in ownership, with less than
30 percent of the original households remaining on the land. Recent analysis
of our data suggests that original households who selected the best soils in
the area (i.e., the alfisols) have been remarkably successful in holding on to
their land, and that most of those properties have not entered the real es-
tate market to benefit later-arriving settlers [19]. This agent-based simulation
benefits from household-level data collected by one of the co-authors in the
first three years of settlement |20, 21, 22], and subsequent and more extensive
household survey research in 1997-1999 [4, 186, 17, 19]. It also benefits from
very intensive studies of land use and land cover analysis, with a focus on the
dynamics of secondary succession in the first half of the 1990s [15, 24, 25].

These previous analyses, however, have not undertaken the challenges
posed by agent-based modeling within a spatially explicit framework as is
proposed here. While the LUCITA simulation system described here is based
on these previous analyses, its focus on simulating land-use decisions at the
individual household level is inspired by a model outlined in McCracken et
al. [16] that focuses on frontier occupation and environmental change as pro-
cess. This model proposes that land-use changes in the Altamira region should

be understood, not only as a result of large-scale, temporally defined effects -

such as changing credit policies, but also as a product of local household-level
effects, such as the age and gender characteristics of farm families. This model
maps out a trajectory for families, which relates the type of agricultural prac-
tices pursued to a number of factors including the available labor pool within
each household. The model describes five stages in the life of a household. In
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the early stages of household development, limited family labor supplies lead
to a reliance on annual crops and associated high rates of deforestation. In
the later stages of household development, larger labor and capital resources
allow for the development of pastoral lands and/or perennial crops.

Actual trajectories of household agricultural strategies are not as clear as
those suggested by the conceptual model [16]. This raises the question of how
families make land-use decisions, given the characteristics of their natural en-
vironment (such as soils, topography, and water availability), their economic
environment (such as distance to markets, credit policies, and commodity
prices), and their own households. It is intended that the development of the
LUCITA simulation system will eventually provide researchers with an addi-
tional tool for exploring these questions. The structure of the initial version of
LUCITA, and some observations of its initial behavioral characteristics, are
described in the following sections.

3 LUCITA MODEL DESIGN

3.1 OVERVIEW

The LUCITA model was developed using the Swarm simulation system [18],
a set of software libraries written in the Objective-C object-oriented pro-
gramming language to help facilitate the modeling and simulation of complex
adaptive systems. LUCITA is comprised of two submodels that interact with
one another through a spatially referenced raster landscape. These two sub-
models are utilized to capture both the ecological and human dynamics and
processes characteristic of the target system. Not only do complex feedback
loops exist within each submodel, but also indirectly between the two sub-
models through the landscape. It is the representation of these intrafeedback
and interfeedback loops of the target system that makes the LUCITA model
unique from other spatially referenced agent-based models (ABMs).

The basis of the ecological submodel is derived from the KPROG2 model,
originally developed by Fearnside [7] to estimate human carrying capacities
in regions of the Transamazon Highway. Multiple regression equations for
changes in soil characters and the estimation of crop yields were adopted
from the KPROG2 model for use in LUCITA. The dynamics associated with
changes in soil fertility due to varying agricultural practices and the process
of secondary succession could not have been modeled without the multiple
regression equations provided by KPROG2. Thus, the ecological submodel
is capable of modeling the impacts of deforestation on soil properties, the
relationship between soil fertility and successful crop yields, and the effect of
soil properties on the rates of natural reforestation.

The human system submodel can be best described by the architecture
of an autonomous household agent. Each household agent is representative of
a colonist family and is defined by the composition of the family, available
family and male labor pools, and awvailable liquid capital. Decision making,
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with respect to what agricultural land strategy should be adopted for any
given patch of land, is governed by a nonevolving classifier system. Land-use
strategies, or rules, are represented by binary strings based on principles of
genetic algorithms and compete with one another for selection. Those rules
that are successful, defined as rules satisfying some type of a threshold level,
are rewarded. Ideally, successful rules are reinforced through simulated time
and poor rules excluded from future agent decision making. This agent ar-
chitecture provides a framework to test the conceptual model of household
transition [16], where it is hypothesized that as colonist households age in the
frontier, decision-making shifts from deforestation intensive strategies, which
require minimal labor and capital requirements, and have lower economic re-
turns, to those with high economic returns, that demand less deforested land,
but require greater labor and capital inputs.

3.2 THE SWARM SIMULATION SYSTEM

The Swarm simulation system, generally referred to simply as Swarm, was
originally developed by a team of researchers at the Santa Fe Institute to
assist the study of complex adaptive systems [18]. The motivation for the
research and development of Swarm was the recognition of the importance of
computer models as a research tool, the fact that most researchers are not
software engineers and that too much time was being wasted on writing poor
software code rather than focusing on research, and the need for a standardized
suite of tools to facilitate the development of reproducible computer models.
Swarm is a set of software libraries written in Objective-C, an object-oriented
programming language, and makes no formal assumptions of the type of model
being developed. This implies that Swarm can be used in a wide array of
scientific disciplines such as chemistry, economics, and anthropology.

The basic unit of a Swarm simulation is the agent, where an agent is
defined as any type of actor within a system that is capable of generating
events that are able to impact itself, other agents, or the surrounding envi-
ronment [18]. Interactions of an agent with itself, other agents, and its sur-
rounding environment are made via discrete events. A Swarm simulation is
comprised of a schedule of discrete events defining a series of processes taking
place with a collection of agents. Drawing from the object-oriented program-
ming paradigm, a swarm agent is modeled as an object. Any object has both
a state and behavior. Object variables are used to describe the state of an
object, where the behavior of an object is defined by the class from which it
was instantiated.
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3.3 SPATIAL DATA LANDSCAPE IN GEOGRAPHIC INFORMATION
SYSTEMS

The raster landscape is representative of the intensive study area documented
in the KPROG2 model [7]. The study area is situated in the vicinity of
Agrovila (village) Grande Esperanga, in the municipality of Prainha, in the
state of Pard. The area is approximately 50 km west of Altamira. The primary
reason for selecting this study area was because of the availability of soils data,
such as pH. Although the study area differs from the study area documented
by Moran [22], from which the source of household behavior data is obtained,
it can be argued that the conceptual model of household transition applies to
all regions of the Amazon Basin, irrespective of a specific geographic location.
For example, given the availability of soils data in the Moran study area, there
is no reason why LUCITA could not spatially reference that location.

An area comprised of 236 properties, each 100 hectares in area, is repre-
sented by a raster landscape. Properties that are adjacent to the Transamazon
Highway have a lot dimension of 500 m by 2000 m and those located off on
feeder roads with a lot dimension of 2500 m by 400 m. Each raster cell has
a grid resolution of 100 m, representative of an area of 1 hectare. For the
purpose of generating a raster landscape, each property lot is assumed to be
rectangular in shape. Several property lots in the soils data maps were not
rectangular in shape and, therefore, a geometric transformation of the prop-
erty lots were required so that both the property layout in the data maps
matched the property lot generated within the LUCITA model. Given the
assumption of rectangular-shaped property lots in the landscape and that the
data maps were not to scale, meaning that from a visual analysis, all property
lots were not 100 ha in area, digitizing the data maps and subsequently con-
verting them to a raster format for initial soil parameter input into LUCITA
was not an option. Instead, a text file, representative of the Swarm landscape,
was generated and imported into the ARC/INFO GRID module, where a
process of manually adjusting cell values to match the soils data maps was
performed. The GRID data layers of pH, carbon, nitrogen, phosphorus, and
aluminum, were converted back into a text file for import into the LUCITA
model. The untransformed landscape layout, the transformed landscape gen-
erated by Swarm as displayed by ARC/INFO GRID, and an example of a
soils data map is depicted in figure 1.

For each landscape grid cell, a one-to-one reference exists between a grid
cell and an environment object instantiated from an environment class. This
implies that for any given household property lot, there exists one hundred
environment objects since one property lot is composed of one hundred grid
cells. The purposes of an environment object is to provide the spatial grid co-
ordinates of a particular patch of land with respect to the artificial landscape,
to differentiate one patch from another through the use of unique internal
keys, to store the current land cover for a particular grid cell, to keep a tally
of the number of years a grid cell has been used continuously and for what
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FIGURE 1 Illustration of property lot layout in data maps (left), where dots are
representative of sampled areas, the raster layout in ARC/INFO GRID (center), and
a sample LUCITA data map (right), in this case representative of pH categories.

land use, and to act as an interface to spatially link a soil object to a grid cell
for KPROG?2 purposes described in the following section.

During any simulation, the landscape is responsible for tabulating land
cover frequencies and for managing the transition of land from one type of land
cover to another, while enforcing rules such as the number of maximum years a
patch of land may be used in continuous agriculture and the minimum number
of years a patch of land must remain in fallow prior to reuse. For instance,
manioc, which has a growing season just over a year, renders a patch of land
unavailable for use for two years. Accordingly, the landscape will monitor
and identify when this patch has satisfied the growing requirements of the
manioc land-use strategy and subsequently release the patch of land for future
use at the appropriate time event. Similarly, stages of secondary succession,
categorized by age, are also defined internally by the landscape. Conceptually,
the landscape can be thought of as a land manager, which simply monitors
what proportion of land is being used for a particular land use and what state
those patches of land should be set to for the next time event.

3.4 KPROG2 MULTIPLE REGRESSION EQUATIONS

As mentioned in the previous section, for any given grid cell an environment
object exists and it is through a reference in the environment object that a soil
object is linked to a grid cell. The KPROG2 multiple regression equations and
the parameters required by these equations to model crop yields, soil changes
caused by burning, soil changes under land covers that are not burned (i.e

secondary succession), soil changes under pasture, and soil changes as a result
of the application of fertilizers and lime, are contained with the definition of
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the soil class. The specific soil parameters that are required by the multiple
regression equations required for calculating crop yields and soil processes
include levels of pH, nitrogen, carbon, phosphorus, and the concentration of
aluminum ions.

In slash-and-burn agriculture, a farmer will deforest a patch of land and
subsequently burn in an attempt to alter soil conditions to improve crop yields.
Three types of land covers are considered by a farmer for clearing and burning
and they include virgin forest, secondary forest, and weedland covers. Each
of these three land covers has a set of multiple regression equations that
describes how the soil parameters are to change if it were to be cleared and
burned. Under circumstances where no burning is required, such as land in
pasture, land in secondary succession, or land in continuous agricultural use,
changes in soil parameters are governed by other sets of multiple regression
equations. Maintenance of cacao and black pepper plantations often require
the application of fertilizers to raise phosphorus concentrations and lime to
reduce the acidity of soil, both critical criteria for good perennial crop yields.
Changes in soil parameters resulting from the application of fertilizers and
lime is no different than other soil processes that are modeled using a distinct
set of multiple regression equations. For instance, the equation used to model
changes in nitrogen after a virgin forest burn is described in equation (1)
below. A complete review of all the multiple regression equations adopted
from the KPROG2 model is documented by Fearnside [7].

Changes in nitrogen are represented by

Y =5.80 x 1072 — 0.654A4 + 4.89 x 10~2B + 2.63 x 10~2C
where
Y = nitrogen change (% dry weight)

A = initial nitrogen (% dry weight) (1)
B = initial carbon (% dry weight)
C = initial pH

3.5 AGENT ARCHITECTURE AND DECISION MAKING

For any given property lot of 100 grid cells on the raster landscape, an in-
stantiation of a household object class exists and is referenced to those cells.
Each agent has an internal representation of its environment and itself. An
agent has an internal representation of the environment in that each agent
is aware of the boundaries of its artificial world within which it exists, the
components of that artificial world that it is capable of impacting, and the
types of land covers characterizing its immediate surroundings. Further, an
agent, using its internal representation of itself, is capable of describing its
family composition, both total family members and the number of males in
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the family, the available capital resources, and the land-use strategies it is
capable of implementing.

The behavior of an agent can be described by a set of actions that an
agent is capable of executing repeatedly throughout a simulation. In general,
these actions tend to deal with the clearing of land, the burning of deforested
land, the growing of agricultural crops, and the harvest of crops sown in a
given year. In most instances, labor and capital resources are required by
these actions. The ability of an agent to identify which patches of land from
its property to deforest and burn is determined by a set of clearing preferences
defined by the end user at the start of a simulation. Obviously, variations in
clearing preferences can affect the rate of deforestation on a given property
lot or across the landscape for that matter. For instance, if an agent’s first
clearing preference is virgin forests prior to any land cover, it can be expected
that all virgin forest land will be deforested prior to any other land covers
being considered. Following the clearing of a patch of land, an agent must
make a decision regarding which crop should be planted based on previous
experiences. This decision-making process is governed by a classifier system
and is described below. Following a full growing season, crops are harvested
and crop yields.calculated.

Land-use strategies or rules in LUCITA are encoded as 270-bit (1s and
0s) genetic algorithm strings and are stored in a rule base. Booker et al. [2],
Goldberg [9], and Holland [11] provide an overview of genetic algorithms. Each
agent has a distinct rule base comprised of eight rules reflecting the land-use
strategies for the agricultural crop production of rice, beans, manioc, maize,
cacao, and black pepper. The monthly family labor, monthly male labor, and
capital requirements of any land-use rule and the action to be triggered given
that the requirements of that particular rule are satisfied is encoded in the
structure of the 270-bit string. Each monthly family and male labor require-
ment is translated from base 10 to base 2 and is represented by a series of 10
bits. Therefore, the twelve months of family and male labor requirements for
a given land-use rule is encoded in the first 240 bits (i.e., 24 months multiplied
by 10 bits/month) of the 270-bit string. The capital requirements for a given
land-use rule are encoded no differently than monthly labor requirements;
however, a series of 20 bits is required for encoding instead of the previous
10 bits. Small base 10 numbers, characterized by monthly labor requirements,
when converted into base 2, requires very few bits. In contrast, large base
10 numbers, characterized by capital requirements, when translated into base
2 strings, requires many more bits for representation. The difference in the
number of bits required to encode monthly labor and capital requirements is
attributed to the type of values associated with each type of variable. For both
monthly labor and capital requirements, an estimate of the greatest possible
value for these variables were made, and subsequently translated into base 2
to identify the minimum number of bits that would be required for encoding.
The final 10 bits of the 270-bit string are used to represent an effector, or
the action to be taken if the conditions of a string are satisfied, and in this
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FIGURE 2 General organization of a classifier system used in LUCITA.

case simply represents that type of land-use strategy to be implemented. A
strength value is associated with each rule and reflects the fitness of that rule
or the effectiveness of that rule. An effective land-use rule, meaning those
that generate satisfactory crop yields, should be reinforced through simulated
time and should be observed through an increase in strength. A base 2 repre-
sentation of rules was selected for ease of implementation with the classifier
system.

Providing that an agent has enough labor and capital resources to defor-
est a patch of land for agricultural production, the decision-making process
of which of the eight land-use strategies to implement is determined by a
classifier system. The classifier system used in LUCITA is designed and im-
plemented following the concepts described by Booker et al. [2]. A classifier
system is typically comprised of three components: a performance system, a
credit assignment system, and a rule discovery system (fig. 2).

The performance system is responsible for matching rules in the rule base
to an encoded message composed of 260 bits, which describes the monthly fam-
ily labor, monthly male labor, and capital available to an agent at a particular
instance in time. The structure of an encoded 260-bit message is no different
than the above-described 270-bit rule structure, except for the omission of
an effector tag. Those rules that are matched are entered into an auction. A
rule is considered to be a match if and only if every monthly labor and cap-
ital available to an agent is greater than or equal to the respective monthly
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labor and capital requirements as defined by that rule. This implies that un-
der circumstances where very labor and capital intensive land-use rules are
matched, those rules that are less labor and capital intensive are also matched
and entered into the auction. For instance, if an agent can afford to grow ca-
cao, which has high labor and capital requirements, an agent is most likely
also capable of growing rice or beans. During the auction process, a matched
rule makes a bid based upon its strength. An effective bid is subsequently
calculated by simply adding a random value between 0 and 1 to the original
bid made by a rule. An effective bid is calculated to avoid the situation where
two or more rules have the same fitness and in turn make identical bids. The
rule with the greatest effective bid is then selected and used by the agent.

Effective rules in the rule base must be somehow reinforced through time
and those that are poor, eventually excluded from the decision-making pro-
cess. A household agent should have a history of land-use experiences and
ideally be able to learn from those experiences and identify those types of
land-use strategies that are more effective than others. This process of weed-
ing out effective rules through simulated time can be accomplished by taxing
and rewarding those existing rules in a rule base, meaning decrementing or
incrementing the strength of a rule. It is the credit assignment system that
is responsible for the actual rewarding process. Because only one matching
rule can be selected for one patch of land, the bucket-brigade algorithm is
not required. In the LUCITA classifier system, at any time event, all rules
existing in the rule base must pay a life tax rate (i.e., 1%). Further, rules
that match an encoded agent message must pay a bid tax rate to compete
in the auction process (i.e., 5%). The winning rule pays its tax in the form
of its bid, sometimes 10% of its strength. In general, the effectiveness of the
winning rule is evaluated against some criteria, such as the ability of that rule
to generate an expected crop yield per hectare. Under circumstances where
that winning rule satisfies the defined criteria, it is rewarded and thereby re-
inforced. However, under circumstances where that rule is deemed ineffective,
that particular rule would have paid a significantly larger tax than all other
rules, thereby reducing its strength or fitness and affecting its future of being
reselected. The dynamics associated with the competition of rules and the
reinforcement of effective rules through simulated time will be illustrated in
a case scenario of the one-household version of LUCITA.

The functionality of the rule discovery system is not implemented in LU-
CITA since it cannot be applied to the land-use rules given the nature of the
information encoded in the structure of the rules. The purpose of the rule dis-
covery system of a classifier system is to try to evolve new rules by applying
genetic operators, such as mutation or crossover, to the most fit rules in a rule
base.

In more traditional applications of classifier systems, rule strings are often
an encoding of a series of conditions that either evaluates to a true or false
state, where a series of conditions triggers some type of response or action.
The reason why applying genetic operators to the LUCITA rules would be
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inappropriate is because that the conditions of any given rule string does not
evaluate to some state of true or false, but rather translates to some specific
type of numeric labor or capital value. The defined labor and capital conditions
defined by a rule are static and must be satisfied prior to the implementation
of any land-use strategy. For instance, it would be incorrect to crossover two
rule strings, each representing completely different land-use strategies, since
this would imply that the labor and capital requirements for each of these
rules are variable which is clearly not the case. Each land-use rule has one
and only one set of family labor, male labor, and capital requirements that
must be satisfied prior to implementation. For this reason, the classifier system
utilized in LUCITA is referred to as a nonevolving classifier system.

3.6 SCHEDULING OF EVENTS

For any given simulated year in LUCITA, a series of events is scheduled to
simulate the actions of a frontier colonist who practices slash-and-burn agricul-
ture and the associated impacts of those practices on an artificial landscape.
In the versions of LUCITA described in this chapter, dynamic scheduling
of events is not considered although possible using Swarm. At this present
stage of development two versions of LUCITA exist—the one-household ver-
sion and the landscape version. The one-household version of LUCITA focuses
on exploring simulations at a local scale (one property), so as to provide a
basic understanding of how an agent makes decisions, how decision making
is affected by variability in environmental conditions, what relationships or
feedback loops exist between both submodels, etc. In contrast, the landscape
version of LUCITA focuses at a regional scale (236 properties), where only
the regional land-use trends are of interest. The rationale of this approach is
that if the one-household version of LUCITA is explored to a point that lo-
cal interactions can be explained and understood, then at the regional scale,
there is no need to consider local interactions but rather emphasis can be
placed on observing the emergence of regional land-use trends. Processes or
actions relevant to the KPROG2 submodel and the human system submodel
are scheduled as events. The two versions of LUCITA only differ in the num-
ber of agents scheduling events and the number of properties affected by agent
actions. A flow chart diagram illustrating the scheduling of events is provided
in figure 3.

At the start of each year, an event is scheduled to tabulate the frequency of
each land cover occurring on the landscape and archived in a data file. At the
conclusion of a simulation, this data file can be used to describe the trajectory
of land uses both at a local and regional scale, depending on which version of
LUCITA was simulated. Following this tabulation, an event is scheduled to
identify which patches of land need to be shifted to an alternate land cover
based on the transition of land covers internally programmed. The scale of a
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FIGURE 3 Summary flow chart of schedule of events for any given agent and its
property lot.
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patch of land is always a grid cell, or 1 hectare. The criteria used to determine
the transition of one land cover to another is based on the previous land cover
of a patch of land and the number of years that patch of land has been in
continuous use. For example, a patch of land that has exceeded the maximum
number of years of continuous cultivation are processed to a stage of fallow
and a patch of land that is some stage of secondary succession is shifted to a
further advanced stage of secondary succession. _

It is important to note that family and male labor pools are reset at the
start of each new year. It is assumed in LUCITA that any given patch of land
used for the production of perennial crops or for pasture with or without cattle
is maintained prior to any considerations made by an agent to implement a
new land-use strategy. Hence, an event is scheduled for each agent to check
within its property for patches of land that need to be maintained and to
commit the necessary labor and capital resources required by those land uses.
Any new land-use strategies are not considered until after this maintenance
event is processed.

Providing that labor and capital resources are still available, an event is
scheduled for the clearing and burning of one patch of land. An agent will
identify, based on its available labor and capital, which of the available three
land covers (i.e., virgin forest, secondary forest, and weed) it is capable of
burning. The criteria used in selecting a patch of land to be cleared and burned
are the clearing preferences defined by an agent, the identified land covers that
an agent is capable of clearing, and the patches of land free for use in a given
property lot. Land is cleared and burned prior to any consideration by an
agent of what type of land use is to be implemented. Following the clearing and
burning of a patch of land, the decision-making process of an agent is invoked
and with the help of the classifier system, a land-use strategy is recommended
and implemented. Under circumstances where there is insufficient labor and
capital to implement a land-use strategy after clearing and burning a patch of
land, that land is simply abandoned by an agent and enters some early stage
of secondary succession. An event of clearing and burning a patch of land,
followed by an event for agent decision-making purposes is repeated until
either one of the criteria of family labor, male labor, or capital is exhausted.

After the process of land allocation is complete, an event is scheduled
to calculate the soil changes for each patch of land in a given property. Not
only do soil changes need to be calculated for patches of land that have been
cleared and burned for new agricultural land uses, but also for those patches
of land undergoing some stage of secondary succession. For any given patch
of land under any land cover, a set of KPROG2 multiple regression equations
exists to determine the appropriate changes in soil parameters. Using these
changes in soil parameters, an event is initiated to calculate crop yields for
each and every patch of land in agricultural use. The crop yield for each land-
use strategy is evaluated against the expected crop yield for the number of
patches used for production to determine the effectiveness of that particular
land-use strategy. For any given land-use strategy, providing that the expected
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crop yield is satisfied, a reward is sent to the classifier system to reward that
land-use strategy in the rule base.

4 LUCITA SIMULATION RESULTS
4.1 EXPLORATORY RESEARCH

The purpose of this section of the chapter is to provide simulation results of
two case scenarios for each of the one-household version and the landscape
version of LUCITA for a time period of 40 years. The two case scenarios differ
in the definition of the land-use clearing preferences. The household param-
eters were constant for all simulations runs, irrespective of which version of
LUCITA was simulated. As described in an above section, the purpose of both
versions of LUCITA and the output generated from each version are different;
however, from a perspective of how events are scheduled in both versions,
they are fundamentally identical. The purpose of the one-household version
of LUCITA is to explore the dynamics between an agent and its surrounding
environment at a local (property) scale. This is accomplished by generating
extensive output data files tracing changes in the environment, changes in
labor and capital resources, and the dynamics of decision making using the
LUCITA classifier system. The purpose of the landscape version of LUCITA
is to observe the emergence of regional land-use trends. For this reason, lit-
tle output data is generated except for annual land cover frequencies. The
landscape version of LUCITA can be considered a container of nested one-
household versions.

4.2 INITIAL AVAILABLE LABOR AND CAPITAL

The initial available monthly family labor for any given month is calculated
by taking the product of the number of family members and the days in a
month. Similarly, theinitial monthly available male labor for any given month
is calculated by taking the product of the number of males in a family and
the days in a month. For instance, for a month with 31 days, if a family was
composed of four individuals, from which two were of the male gender, the
available family labor would be 124 man-days equivalent per hectare and the
available male labor would be 62 man-days equivalent per hectare. Issues re-
garding fertility and mortality within a household are not considered in the
two versions of LUCITA. For this simulation, a family size is calibrated to
six individuals, from which three are of the male gender. All individuals are
assumed to be of a mature age and capable of contributing labor. Initial avail-
able monthly family and male labor is summarized in table 1. With respect to
initial capital, each household agent is initialized with Cr$0 (Brazilian cruzeiro
currency). The initial family composition and initial capital of an agent were
arbitrarily selected and were not based on any data sources.
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TABLE 1 Number of man-days equivalent of monthly family labor per hectare.
Number of man-days equivalent of monthly male labor per hectare.
Monthly Available Family Labor

Month Jan Feb March April May June July Aug Sept Oct Nov Dec
Family 186 168 186 180 186 180 186 186 180 186 180 186

Labor

Monthly Available Male Labor
Month Jan Feb March April May June July Aug Sept Oct Nov Dec
Male 93 84 93 90 93 90 93 93 90 93 90 93
Labor

TABLE 2 The pH in initial soil quality generation for 236 property lots in study
area. From Human Carrying Capacity of the Brazilian Rainforest by P. M. Fearnside
© 1986 Columbia University Press. Reprinted by permission of the publisher.

Class pH range Frequency (%) Mean pH

1 < 4.0 33.0 3.7
2 4.0-44 30.2 4.1
3 4.5-49 : 15.3 4.7
4 4.0-54 12.5 5.2
5 5.5 -5.9 5.3 5.6
6 6.0 -6.4 3.6 6.3
7 > 6.5 0.1 7.1

4.3 INITIAL SOIL CONDITIONS

For the purpose of this simulation, an assumption is made that the soil con-
ditions across a property lot are homogeneous for the one-household version
of LUCITA. The mean of the most frequently observed class for each initial
soil quality data sampled by Fearnside [7] is assigned to each respective soil
parameter. For example, using the initial pH soil quality data for the study
area, summarized in table 2, the mean of class 1 is assigned as an initial pH
value since that particular class is the most frequently observed.

In the case of the landscape version of LUCITA, the spatial data maps
translated from Fearnside [7] were used to calibrate each soil parameter.
Therefore, the landscape soil parameters for each of the 236 property lots
are spatially variable unlike the homogeneous one-household property lots.

4.4 LAND COVERS AND CLEARING PREFERENCES

Nineteen possible land covers exist in LUCITA and are described in table 3.
Prior to a simulation run, an agent’s clearing preferences must be defined.
The land covers that are considered for clearing include virgin forest, weeds,
and any patch of land in some stage of secondary succession (i.e., land IDs
from 1 through 9 only). Categories of secondary succession are based on the
criterion of age only and are defined following the same classification used in
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TABLE 3 The nineteen possible land covers in LUCITA.

Land-Use Code ID Land Cover

House

Virgin Forest

Weeds & Bare Land (less than 1 year of age)
Secondary Succession 1 (greater than 1

but less than 2 years of age)

4 Secondary Succession 2 (2 to 3 years of age)
5 Secondary Succession 3 (4 to 6 years of age)
6 Secondary Succession 4 (7 to 11 years of age)
7
8
9

W N O

Secondary Succession 5 (12 to 16 years of age)
Secondary Succession 6 (17 to 20 years of age)
Secondary Succession 7 (over 20 years of age)

10 Rice

11 Beans

12 Maize

13- Manioc

14 Fallow

15 Cacao

16 Black Pepper

17 Pasture without Animals

18 Pasture with Animals

the original KPROG2 model. For any simulation, any patch of land can only
be used continuously for a maximum cultivation period of two years. When
the maximum number of years of continuous cultivation are exceeded, a patch
of land must enter a fallow stage for a minimum period of three years prior
to reuse. Clearing preferences in combination with whether or not labor and
capital requirements are available to slash-and-burn are used to identify which
type of patch of land in a given property should be selected for use.

The two case scenarios have different clearing preference definitions, de-
fined in table 4. The first case scenario assumes that an agent’s first preference
is for mature secondary forests followed by less mature stages of secondary
succession and only deforest virgin forest land when no other secondary land
covers are available. This scenario is representative of circumstances where
frontier colonists recognize the importance of secondary succession in regen-
erating soil fertility. The second scenario assumes that an agent has some type
of an incentive to deforest virgin forests. When virgin forests have been de-
pleted, it is assumed that agents will select to clear the patches of the land
that require the least labor and, therefore, preferences range in order from
weeds and bare land to secondary succession 7. This scenario is representative
of a situation where agents may be influenced by social or economic factors
to clear virgin forest lands and do not have an understanding of the impor-
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TABLE 4 Definition of land clearing preferences for two case scenarios.

Scenario 1 Scenario 2
Order Land Cover Order Land Cover
1 Secondary Succession 7 1 Virgin Forest
(over 20 years of age)
2 Secondary Succession 6 2  Weeds & Bare Land
(17 to 20 years of age) (less than 1 year of age)
3 Secondary Succession 5 3 Secondary Succession 1 (greater
(12 to 16 years of age) than 1 but less than 2 years of age)
4 Secondary Succession 4 4  Secondary Succession 2
(7 to 11 years of age) (2 to 3 years of age)
5 Secondary Succession 3 5 Secondary Succession 3
(4 to 6 years of age) (4 to 6 years of age)
6 Secondary Succession 2 6 Secondary Succession 4
(2 to 3 years of age) (7 to 11 years of age)
7 Secondary Succession 1 (greater 8 Secondary Succession 6
than 1 but less than 2 years of age) (17 to 20 years of age)
8 ‘Weeds & Bare Land 8 Secondary Succession 6
(less than 1 year of age) (17 to 20 years of age)
9  Virgin Forest 9  Secondary Succession 7

{over 20 years of age)

tance of allowing cultivated land to regenerate through secondary succession
to maintain productive soil fertility.

4.5 PATCH SELECTION

It is important to note that the type of patch of land identified for clearing is
not randomly selected from the property lot. A bubble sort is applied to all
patches of land in a property lot to order them in a south-to-north ordering
for properties located on feeder roads, and in an east-to-west ordering for
properties adjacent the Transamazon Highway (fig. 4). This implies that the
direction of clearing is predefined; however, the magnitude of land cleared
remains unaffected and remains dependent on labor and capital resources of
an agent. Household behavior regarding the spatial location of the selection of
land for use is beyond the scope of current versions of LUCITA due to limited
data and knowledge. The ordering of property lots also has implications with
respect to spatial patterns of deforestation, but it is important to note that
in these early stages of LUCITA, the spatial pattern of deforestation is not as
important as the trajectory of household land uses through simulated time.
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4.6 CLASSIFIER SYSTEM PARAMETERS AND REWARD CRITERIA

Any rule contained in an agent’s rule base must pay a life tax of 0.5% of its
existing rule strength. Rules-that are matched based on the available labor and
capital possessed by an agent must pay a bid tax rate of 1% of its existing rule
strength to be considered in the auction process. The winning rule from the
auction process must, in turn, pay 5% of its existing strength when selected for
implementation. Classifier system parameters are constant for all simulation
runs.

Ideally, effective rules should be reinforced through time. Annual cash-
crop strategy rules are rewarded when the expected vield for all patches of land
in a given annual cash-crop rule is satisfied. For instance, if the expected yield
for rice is 1500 kg/ha and 5 hectares of land are used for crop production of rice
by an agent, the annual cash crop rice rule is only rewarded if 7500 kg for the
5 hectares of land is produced. The actual reward value is calculated by adding
the total bid amount made for all the hectares of land use for that successful
land use, plus half of that total. No data is available for perennial crops and,
given the soil condition of the study area, even with liming and fertilizing, it is
often difficult to produce satisfactory yields. For this reason, a perennial crop
rule is assumed to be successful or effective if it produces a yield greater than
0. The reward value is calculated in the same fashion as that of annual cash
crops. Pasture land uses are not evaluated as to their effectiveness and are
therefore never rewarded. The rational for this approach is that pasture land
uses in most instances are always implemented when little labor or capital
remains after implementing other land uses. Therefore, pasture land uses will

Kevin Lim et al. 297

snne RiCE ~==Beans = Maize
e Manioc = (Cacao === Black Pepper

“ Pasture (no cattle) - Pasture (with cattie)

Number of Hectares
> O o 5 ]

N

£

o

Time

FIGURE 5 Land-use frequencies for scenario 1 using the one-household version of
LUCITA.

most likely be implemented more frequently than others resulting in pasture
land uses emerging as dominating land uses. Instead, pasture land uses are
allowed to compete for selection; however, when selected such uses are not
reinforced since pasture land use is often implemented to deplete all labor or
capital resources of an agent before moving on to the next time step.

4.7 SCENARIO 1: ONE-HOUSEHOLD VERSION OF LUCITA RESULTS

The results from simulating scenario 1 are presented in figure 5. Virgin forest-
land, stages of weeds, and all stages of secondary succession are not depicted
in the graph for scaling reasons. Only 29% of the original forest were cleared
for agricultural and pasture use. During the first seven years, all land-use
rules can be seen to compete. This time period, where an agent experiments
with rules, is somewhat shorter than expected. Maize and bean crops can be
seen to be the first crops produced, followed by black pepper, rice, cacao, and
maize. It is interesting to note that sufficient labor and capital are available
as early as year 1 to implement perennial crop rules.

Both pasture land uses are similarly implemented early in this time period,
as expected, as very little labor and capital are required by these land uses.
It is important to emphasize that pasture land uses compete in the auction
process, but do not earn rewards since no criteria is available to evaluate if they
are effective or not. This implies that pasture land uses are only implemented
when very little labor remains following the implementation or maintenance

of other crop rules.
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From year 7 through to year 24, cacao establishes itself as the dominating
land-use rule because of a combination of the fact that it possesses the highest
strength and because it is assumed that any patch of land in perennial use
or pasture is maintained for the maximum cultivation period prior to any
consideration of the implementation of new land-use rules. Other crops are
implemented less frequently as illustrated under the cacao trend line.

By year 26, cacao noticeably ceases to be the dominating land use. This
event can be explained by the decrease in soil fertility in the patches of land
used. Based on the clearing preferences, land uses cycle on only 29 patches
of land from the one-hundred-patch property lot as seen in snapshots of the
simulation presented in figure 9. The most advanced stage of secondary suc-
cession that is ever reached with these land patches prior to being recleared
is the secondary succession 3. By analyzing the crop-yield data file, cacao
crop yields are shown to be negative, implying that a decrease in soil fertility
has occurred, resulting is those land patches no longer being productive for
the production of cacao. An examination of the multiple soil data files of the
patches of land-in use reveal that pH levels decreased to a very low value.

Following this decline in cacao production, most of the land is imple-
mented in the pasture with no cattle land use. This surge of the pasture with
no cattle land use can be explained by observing the previous year’s land use.
Manioc, beans, cacao, and black pepper are produced in year 26, and because
of manioc’s two-year growing season and the assumption that perennial crops
are maintained for the maximum cultivation period, most of the labor for
the subsequent year is already committed to maintenance of these crops. The
little remaining labor is sufficient only for the implementation of the pasture
with no cattle land use resulting in the surge of that land use.

Come year 28, maize and bean land uses emerge as the dominating land-
use trends, complemented by the pasture with no cattle land use. These two
annual cash crops emerge as the dominating land uses because of their ability
to produce on soils with poor fertility. By examining the crop production data
files, it is revealed that while other land uses began to generate negative crop
productions near the same time of the decline of cacao production, maize and
beans continued to produce crops.

In summary, it appears that how clearing preferences are defined may
affect soil fertility, in turn affecting the production of crops. In this scenario,
a stage is reached when soil fertility drops to a point where many land uses
are no longer able to produce crops. The maize and bean land uses simply
emerge as the most effective land uses at the end of the simulation because of
their ability to produce under low soil fertility. Based on the definition of the
clearing preferences for this scenario, an agent is incapable of deforesting all
virgin forests on its property lot and only does so when no other alternative
is available. Therefore clearing preference in this scenario plays a large role
in the emergence of effective land uses and the magnitude of virgin forest
deforestation.
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FIGURE 6 Land-use frequencies for scenario 2 using the one-household version of
LUCITA.

4.8 SCENARIO 2: ONE-HOUSEHOLD VERSION OF LUCITA RESULTS

Simulation results for scenario 2 are presented in figures 6 and 10. Like scenario
1, virgin forests, weeds, and stages of secondary succession land uses are not
displayed for scaling reasons. Virgin forests are completely depleted by year 17
and mature secondary forests fully regenerated by year 20. Land-use trends are
very similar to scenario 1. A common trend in both scenarios is the dominance
of the cacao land-use rule early in the simulation. Other rules continue to
compete for implementation as shown under the cacao trend line, but cacao
is the most frequent land use implemented and maintained on the property
lot.

The first seven years of the simulation are similar to scenario 1 where
results of the experimentation of land-use rules only differ from scenario 1 in
the order of the experimentation chosen by an agent. Black pepper is only
produced during years 2 to 4 and is never produced again in the simulation.
This event can be explained in terms of the dominance of the cacao land use.
Both cacao and black pepper have high labor and capital requirements. Given
that cacao has the highest strength and wins most bids, when no sufficient
labor or capital remains for implementation of the cacao land use, then, in
turn, any consideration of implementation of black pepper is excluded because
of the similar labor and capital requirements. All land uses, excluding black
pepper, continue to compete throughout the simulation.

Cacao continues to be the dominating land use throughout scenario 2,
in contrast to scenario 1, because of the definition of clearing preferences. A
clearing preference for virgin forest is emphasized throughout the simulation
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and, as a result, patches of land are rarely recleared for use since new land
is continuously deforested. This implies that soil fertility remains consistently
high and, in turn, is capable of maintaining the soil conditions for cacao
production unlike in scenario 1 where a decrease in soil fertility occurred.
With the maintenance of cacao production, meaning that the cacao land use
was being reinforced through time, little opportunity was available for other
land uses to dominate.

In summary, scenario 2 further reinforces the importance of clearing pref-
erences in affecting the emergence of dominating land uses and the magni-
tude of deforestation. Further, at the end of the simulation, mature secondary
forests regenerate to cover 77% of the original primary forest extent. In com-
parison to scenario 1, 71% of the original virgin forest was left undisturbed.
Comparing the amount of forest cover in both scenarios, irrespective of the
type of forest cover, suggests an agent, based on its description of family com-
position and capital, can only sustainably manage one quarter of its property
lot.

4.9 SCENARIO 1 AND SCENARIO 2: LANDSCAPE VERSION OF
LUCITA RESULTS

The landscape version of LUCITA generates regional land-use trends based on
a spatially explicit soil landscape. Land-use results from simulating scenario
1 and scenario 2 using the landscape version of LUCITA are presented in
figure 7 and figure 8, respectively. Snapshots of both landscape scenarios are
depicted in figures 11 and 12.

Regional land-use trends are very similar to those at the local property
scale for scenario 1. Virgin forests, weeds, and secondary stages of succession
are once again omitted from figure 7 for scaling reasons. From the total virgin
forest extent, 66% remains undisturbed and is very close to the 71% at the
local scale. The most advanced stage of secondary succession reached is stage
4. Cacao emerges as the dominant land-use trend for approximately the same
duration as that of the local scale. Manioc and pasture with no cattle land
uses emerge as the dominating land-use trends near the end of the simulation.
Instead of the bean land-use trend also emerging near the end of the simula-
tion, like in the case of the local scale simulation, maize emerges as the third
dominant land-use trend. Granted that the clearing preferences were identical
for simulations using each version, the slightly different land-use trends in the
landscape results must be affected by the spatial variability of the soil data
characterizing the landscape. Higher or lower soil fertility in particular regions
of the landscape may lead to increases or decreases in crop production, which
in turn may affect the evaluation of rule strengths. The general similar trends
can be explained by the generation of initial soil quality for the local scale
property lot, where the most frequent soil value of each parameter observed
on the landscape were assigned to the property lot’s soil parameters.
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FIGURE 7 Land-use frequencies for scenario 1 using the landscape version of

LUCITA.

In scenario 2 for the landscape, depicted in figure 8, general land-use
trends are nearly identical to those at the local scale. Once more, only crop
and pasture land uses are depicted in the graph. Virgin forest depletion occurs
at year 33, much later than year 17 at the local scale. Mature secondary forests
begin regenerating at year 21, one year later than the case at the local scale.
Figure 8 shows the dominance of the cacao land use early in the simulation
to the end of the simulation. Other rules continue to compete as shown under
the cacao trend line and match the trends at the local scale results. Following
depletion of primary forest cover, mature secondary forests regenerate to cover
75% of the original virgin forest extent, almost identical to the value obtained
at the local scale. Despite the spatial soil variability of the landscape, the land
clearing preferences ensures that cacao is continuously implemented only on
fertile soil and, so long as soil fertility is adequate for cacao production, it will
continue to dominate.

5 DISCUSSION

An examination of the results presented in this chapter reveals both the
strengths and limitations of LUCITA, and the need for additional data col-
lection within the Altamira study area. This section examines the replicative
validity of the simulations, as compared to the observed situation in Altamira,
and explains some of the behavioral anomalies of the simulations. These ob-
servations point to the need for additional data collection on the natural,
institutional, and demographic and behavioral characteristics of the region.
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FIGURE 9 Snapshots of scenario 1 simulation using one-household version of
LUCITA.
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FIGURE 10 Snapshots of scenario 2 simulation using one-household version
LUCITA.
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FIGURE 11 Snapshots of scenario 1 simulation using landscape version of LUCITA. ‘i FIGURE 12 Snapshots of scenario 2 simulation using landscape version of LUCITA.
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The land-use trajectories generated from scenario 1 and scenario 2 using
both versions of LUCITA do not resemble the trajectory proposed in the
conceptual model of household transition outlined in McCracken et al. [16] for
several reasons, the most important being the definition of the reward criteria
used to evaluate the effectiveness of rules following implementation by an
agent. In general applications of classifier systems, at any given time step, one
rule is selected, evaluated, and reinforced prior to the next time step where a
new rule is selected. In the case of LUCITA, at any time step, several rules
can be selected and implemented depending on an agent’s available labor and
capital resources. Emphasis is placed on the word “selected,” meaning that
we are not referring to the matching of rules to an environmental message
encoded by an agent representing its available labor and capital, but rather
those rules that actually win a distinct auction process in the performance
system of a classifier system. Those rules that are selected are not rewarded,
nor evaluated until all decision making has been completed at the end of a
time step for the simple reason that, during a growing year, a farmer does
not know if the production of a particular crop is successful until the end
of the growing season. Rewarding a rule before all decision making has been
completed will, in effect, bias decision making toward effective rules selected
early on, since their rule strength will be reinforced before other rules have
an opportunity to be tested within that same time step.

The adoption of an approach where a set of rules are not evaluated and re-
warded until all decision making has been completed introduces several prob-
lems, which has emerged from the simulation of both scenarios presented in
this chapter, ultimately affecting land-use trajectories. Selected rules must
pay a bid value depending on the defined bid ratio; however, because rule
strengths cannot be modified until all decision making has been completed,
these bid amounts must be archived in some type of a data structure. Simi-
larly, reward payments must be archived to prevent changes in rule strengths.
A problem that has emerged in the LUCITA simulations is that, if a land
use is implemented on more than one patch of land and is evaluated as an
ineffective rule, its rule strength is often depreciated to a strength below pre-
viously identified less effective rules. This is because, for each implementation
of a land-use rule, a bid is paid based on the defined bid ratio. The more
times a land use is implemented during a given time step, the larger the paid
bid amount and, if the land-use rule is evaluated to be ineffective, there is no
recovery of the paid bid through rewards.

Based on the definition of the reward criteria for land-use rules in the
existing version of LUCITA, a land-use rule cannot be evaluated as partially
effective. A rule either pays its total bid amount or is rewarded the paid bid
amount plus a percentage. There is no consideration of the spatial variability
of crop yields in the existing version of LUCITA and, hence partial recovery of
a proportion of total paid bids by a land-use rule is not possible. For instance,
an extremely successful crop yield on one hectare of land may compensate for
poor vields on another two hectares and yet still achieve the total expected
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crop yield for three hectares of land, ultimately resulting in the reinforcement
of the rule. Consider that same situation, but in this case the total expected
yield for three hectares of land is not achieved; despite the expected yield for
one hectare of land being satisfied, the rule itself is not reinforced. There-
fore, as mentioned above, rules that are implemented on several patches of
land can lose a large proportion of its rule strength if evaluated as ineffective
based on the definition of the reward criteria and the lack of consideration of
the spatial variability of crop yields. Given the general poor initial soil qual-
ities and the rapid decrease in soil fertility following slash-and-burn, many
hectares are unable to achieve the expected crop yields. In turn, this inability
to achieve expected crop yields is reflected by a continuous net decrease of rule
strengths toward zero as opposed to a dichotomy of rules emerging, comprised
of effective and noneffective rules.

Simulated land-use trajectories are also affected by how the labor and cap-
ital requirements of a land use are defined, and in turn determining which ones
can be implemented by an agent. A general idea of the conceptual transition
of households is that, when a household arrives to the frontier, that house-
hold on average has very little liquid capital and, hence, can only pursue a
subset of the total available land-use rules, which often excludes perennial
crop production. What has emerged from the simulations is that agents are
often capable of beginning to implement perennial land-use rules as early as
the second production year since enough liquid capital has been produced in
the first year of crop production. The general idea of the transition of house-
holds is modeled correctly since, during the first time step, we observe no
competition of perennial crop rules and mostly only annual cash crop rules
and pasture land-use rules. This suggests that a discrepancy exists in how
net income from the sale of crops is calculated. Because of a lack of data,
describing the costs or expenses of a household family on an annual basis
it was assumed that from the total annual income generated from crop sales’
75% of the income was lost to expenses, such as medicine, transportation and’
crop seed costs. The capital requirements for each land-use rule defined ir’l the
genetic algorithm strings only factor in building materials and chemical costs
for maintenance. The ability of an agent to implement perennial crop rules as
early as the second year is attributed to the above assumption of net income
given the unavailability of data. In the LUCITA simulations presented in this
chapter, capital was not a constraint for decision making as the conceptual
model suggests since agents were acquiring capital at an exponential rate de-
spite the deduction of 75% of income, but rather labor, specifically male labor
was the limiting factor in determining how many and what land uses could be;
implemented in a given time step. With more detailed information regarding
colonist expenses, net income should be able to be better calculated, resulting
in less-biased land-use trajectories.
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6 CONCLUSIONS

These weaknesses of LUCITA have important effects on the land-use trends
that were simulated for both scenarios. However, the replicative validity of
the existing versions of LUCITA was not a priority at this stage. Instead, the
utility of using agent-based modeling techniques integrated with geographic
information systems (GIS) spatial data is explored in this chapter. In this
regard, LUCITA has the potential for a high degree of structural validity. It
approached the study of land-use change from the bottom up, addressing the
behavior of the individual households that make land-use decisions and allow-
ing overall landscape patterns to emerge as a result of the many actions of
these individuals. The goal was never to test or explore the conceptual model
of household transition, but rather to develop a model that considered both
the ecological domain and the human domain and how they interact with
each other. Further, the development of this preliminary simulation system
highlighted the need for additional data collection efforts within the Altamira
region, designed specifically to support simulation development. The model-
ing and simulation efforts described here relied on data that was originally
collected for other purposes. Additional data collection efforts specific to sim-
ulation development would focus on collecting biophysical information such as
soils, topography, and drainage patterns. Additional data on economic factors
such as the history of credit policies, crop prices, and economic conditions,
which have not yet been implemented, as well as frontier family demographic
and behavioral characteristics, such as the cultural and behavioral factors that
influence land-use decision making, would also be required.

Natural resource management modeling efforts in many instances con-
sider the ecological domain and the human domain in isolation, or at best
simulate the actions of one domain while holding the characteristics of the
other constant. However, given the complex interactions that exist within
each domain and between each domain, integrated modeling approaches are
needed and must be developed. Such an approach will assist researchers in
better understanding the complex nature of the interactions between human
and natural systems. There are very few attempts similar to LUCITA, where
two submodels interacting through a spatially explicit landscape with adap-
tive agents exist in the literature. I is hoped that this chapter presents a
preliminary methodology that other researchers can use as a starting point
and learn from some of the challenges that we have presented from our results
and discussion of the simulations.
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